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回顧：

私のこれまでの物理学会特別講演

・Dual Model と場の理論　　　　　　　　　　　1975.3

・モノポールの凝縮とクオークの閉じ込め       1979.3

・Hamiltonian Quantum Gravity                1985.4

・Stringと重力                               1986.10           

・低次元量子重力模型と弦理論                 1993.9

・弦理論の非摂動的定式化へ向けて             1997.3

・一般相対性理論と素粒子論                   2005.9
　　　　　　(アインシュタイン年　素粒子宇宙合同シンポジウム講演)

・弦理論とは何か：回顧と展望                 2010.3
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1970年代の素粒子論
　現在の素粒子理論を支える方法論的・概念的基礎の

多くのものは、７０年代に築かれた。

クオーク模型がパートン描像と結びつき、ハドロンの複合模型として確立
弱い相互作用と電磁相互作用が、Weinberg-Salam理論により統一され、さらに強
い相互作用もクオーク間力の color ゲージ理論(QCD)として確立
クオークの新しい世代が発見され、WS理論と結びつき、３世代標準模型に結実

繰り込み理論、格子ゲージ理論、非摂動的古典解に関する発展により、
ゲージ場理論の性格についての理解が飛躍的に高まった
一方、50年代から始まった強い相互作用のS行列理論の発展からは、現
在の弦理論につながる新しい展開が起こった

こうした状況のもとで、「相互作用の統一」への動機づけも高まり、70年代中盤には、
「大統一」理論の最初の提案 (Georgi-Glashow,1974)も成された

しかし、素粒子論側からの重力理論(一般相対性理論)との結びつきに関する関心は、
全体としては、極めて希薄であった
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１９７０年代前半の段階では、(generalized) Veneziano, Virasoro-Shapiro 振幅は、

ハドロン散乱のS行列理論の単なる「公式」として提案されたものであり、

そもそも、場の理論と consistent なのかどうかさえ、明らかではなかった。
関連する問題の追求から、後の発展につながる多くのアイデアがその頃に芽生えた。

       

 (arXiv:0911.1624,) 

  to appear in 

　　　　The Birth of String Theory, 
                 Cambridge Univ. Press.

1

Gravity from strings: personal reminiscences
of early developments
Tamiaki Yoneya
Institute of Physics, University of Tokyo
Komaba, Meguro-ku, Tokyo 153-8902, Japan

Abstract
I discuss the early developments of string theory with respect to its connec-
tion with gauge theory and general relativity from my own perspective. The
period covered is mainly from 1969 to 1974, during which I became involved
in research on dual string models as a graduate student. My thinking to-
wards the recognition of string theory as an extended quantum theory of
gravity is described. Some retrospective remarks on my later works related
to this subject are also given.

1.1 Prologue : an encounter with the dual string model
I entered graduate school at Hokkaido University, Sapporo, in April, 1969.
My advisor, Akira Kanazawa who was an expert in dispersion-theoretic ap-
proach to strong interactions, proposed to have a series of seminars on Regge
pole theory. However, the Regge pole theory was somewhat disappointing
for me. I felt that it was too formal and phenomenological in its nature.
Looking for some more favorable topics, I began studying the quantum field
theory of composite particles, which, I thought, might be useful to explain
the Regge behavior from the dynamics of fundamental particles. I read many
papers related to this problem such as those on compositeness criteria, on
the definition of asymptotic field for a composite particle, the Bethe-Salpeter
equation and so on. Although I felt that these subjects themselves were not
yet what I really would pursue, I enjoyed learning various different facets of
quantum field theory.

While still seeking subjects for my reseach, some senior students told me
that a spectacular new development, trigged off by a proposal made about
a year ago by Veneziano [Ven68], was springing up. After reading the paper
of Veneziano and some others which extended the Veneziano amplitude to

1
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Dear Tamiaki,

Thanks very much for posting to the web your very 
illuminating article of reminiscences, which I just read.
It is very interesting to read about your thoughts 
in the early period when you were grappling with 
questions that are still puzzling us today.

- Edward Witten
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１９７３年、春から秋にかけて、重力との関係に関する最初の論文を書いていた頃、
悩んでいた３つの問題

局所場に基づく一般相対論と、string の間を結ぶ「対応原理」はあ

るか。

Feynman rule の段階で、一般相対論と　closed string の関係をつ
けられるか 

もし、closed string が局所場理論から一種の集団運動として導ける
なら、一般相対論は、実はゲージ理論から導かれるものなのか？

closed string に対する Feynman-like rule を中西分解の拡張により　定式化できないか。

一般相対論の非線形性が、string の広がりの効果(非局所性）で置き換わっているが、
それを明確な数学的構造で特徴づけられないか

これが最も悩ました謎、弦理論における重力の “emergence” は、Sakharov のアイデア

（1967, “induced gravity” につながる）に近いことに、少し後になって気がついた。

実際、弦理論では、open-closed duality のため、graviton を gauge field 

の複合状態と看做せる。
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「場の理論から弦」
へのアプローチ：
(1970-73)
Fishnet diagram, 
Nielson-Olesen vortex
NO nonlinear theory
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の複合状態と看做せる。

“String theory is, at a new level, the realization of old ideas concerning 
induced gravitation! I cannot refrain from feeling proud on this point!”

                                         A. D. Sakharov (1921-89), 1985

Nobel peace prize 1975

「場の理論から弦」
へのアプローチ：
(1970-73)
Fishnet diagram, 
Nielson-Olesen vortex
NO nonlinear theory
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現代の言葉では、 Riemann 面の moduli 空間の、Feynman rule と
consistent な triangulation にあたる。
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時空不確定性原理(1987)や、purely cubic action の予想(1985)
などが、この方向から生まれた着想。

最初の問題は、未だに解決していない。この問題意識は常に
私の脳裏を離れず、後の仕事の多くを直接、間接に動機づ
けている。

２番目の問題は、技術的な問題だが、これも解決できれば、弦理論の理解に多い
に役立つ。弦の場の理論で、 higher excited state を先に積分するという、繰り込
み群的な方法で原理的には導けるべき。open string では、できている。

　　　　　　　　　

３番目の問題は、「ゲージ重力対応」という形で、一つのパラ
ダイムとしての理解には到達したと言える。しかし、まだまだ課
題は多い。
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Brief history of strings and  gauge/gravity correspondence

1968  Veneziano model

2 J. Phys. Soc. Jpn. Full Paper Author Name

nism, renormalizabilty, quark confinement, and quantum
anomaly.

In the case of string theory, we have not yet arrived
at any satisfactory non-perturbative definition of string
theory, nor at primordial principles governing its struc-
ture. In spite of such an obscure status with respect to
its ultimate fate, it seems fair to say that string theory
has already provided us an entirely new perspective on
how gravity could be unified with other interactions on
the basis of quantum theory of strings and associated
branes. It also suggested a new viewpoint on the dynam-
ics of gauge-field theories in a way which has never been
envisaged without unification with general relativity via
string theory.

In this article, we try to convey the present situation
of string theory to physicists who are working in other
research fields than particle physics, explaining several
key ingredients of string theory and reviewing some of
important developments without technical details. For
mathematical expressions, we use the natural units in
which ! = 1 and c = 1 throughout this article.

2. Perturbative formulation of string theory
2.1 Discovery of relativistic strings

String theory evolved from a proposal made in the late
60s for a particular 2↔2 scattering amplitude, called the
‘Veneziano formula’,2 of mesons which satisfies a special
symmetry requirement called s-t ‘channel’ duality. The
latter demands that the amplitude is composed of ele-
ments such as the formula

V (s, t) =
∫ 1

0
dx x−α′s−α0−1(1 − x)−α′t−α0−1 (1)

which can equally be described by exchanges of particles
between two interacting particles

V (s, t) =
∞∑

n=0

rn(s)
t − m2

n

=
∞∑

n=0

rn(t)
s − m2

n

(2)

(first equality, ‘t-channel’ description) or through forma-
tion of resonance-like states (second equality, ‘s-channel’
description). Here, s and t are Lorentz invariant combina-
tions of energy-momenta s = −(p1+p2)2, t = −(p2+p3)2,
and α′ and α0 are two parameters. It soon turned out3
that this amplitude and its various generalizations can
be interpreted in terms of the dynamics of relativistic
open strings propagating space-time, provided α0 = 1.
The analogous amplitudes4 which correspond to closed
strings were also constructed.

For example, the pole singularities at s or t = m2
n =

(n− 1)/α′ are interpreted as representing possible states
of strings with definite (mass)2. There are an infinite
number of them corresponding to various vibrational
and rotational modes of strings. Actually, it also turned
that for completely consistent formulations of quantum
string theory,5 it is necessary that the space-time dimen-
sions must be at some particular value (critical dimen-
sions), 26, or if we want to include space-time (and world-
sheet) fermions6 consistently, at 10. In the latter case we
can eliminate the tachyonic ground state with negative
(mass)2 with n = 0, by demanding space-time supersym-
metries.7 This is the origin of the naming, superstring

theory. It was also understood that closed strings can
actually be generated by open strings, since one-loop am-
plitudes of open strings necessarily contain singularities
corresponding to the propagation of closed strings. In
other words, the s-t channel duality extended to loop am-
plitudes of strings implies that closed strings are channel-
dual to both open and closed strings.

2.2 World-sheet quantum mechanics of strings
We can formulate quantum string dynamics using a

path-integral over all possible configurations of world
sheets swept out by strings in space-time. In a symbolic
and abbreviated notation, the amplitudes are expressed
as

∑

{Σ}

g−χ(Σ)
s

∫

M
[dXdψ] exp

(
− 1

4πα′SΣ[X,ψ]
)

(3)

where the symbol {Σ} denotes the set of all in-equivalent
(two-dimensional) Riemann surfaces, and M is the set
of configurations of world sheets, described by fields
X,ψ, . . . defined on the Riemann surface. The manner
of how the constant α′ appears in this expression shows
that 1/α′ is essentially proportional to the energy, or ten-
sion, of the string per unit of length. As in the usual path
integrals, we have to specify some boundary conditions
corresponding to the initial and final states, which are
suppressed in the present symbolic notation. The action
SΣ is an integral over a given Riemann surface Σ and
takes the form∫

Σ
d2ξ L(X, ∂ξX,ψ, ∂ξψ, . . .)

with

L = gµν(X)∂z̄X
µ∂zX

ν + · · · (4)

where (ξ1, ξ2) with z = ξ1 + iξ2, z̄ = ξ1 − iξ2 are two-
dimensional coordinates parametrizing the Riemann sur-
face Σ. The space-time coordinates of strings are repre-
sented by fields Xµ(ξ) (µ = 1, 2, . . . , d − 1, 0 with last
index 0 being the time direction) on Σ, and gµν(X)
is the metric tensor of target space-time. The addi-
tional field variable ψ in (3) designates all other nec-
essary fields, which are used to describe non-orbital de-
grees of freedom, such as spins, associated with strings.
The constant gs, called string coupling constant, speci-
fies the weight of Riemann surfaces with various differ-
ent topologies. It is well known that the topologies of
Riemann surfaces are classified by the numbers of han-
dles and boundaries, (h and b respectively). The symbol
χ(Σ) ≡ 2 − 2h − b − pc − po/2 is the Euler number of
Riemann surface fixed by topology, with additional infor-
mation about the numbers, pc and/or po, of ‘punctures’
inserted in the bulk of Σ and/or on the boundaries, re-
spectively. The punctures essentially amount to attach-
ing infinite Riemann surfaces of cylinder topology (pc) or
of strip topology (po), which correspond to (initial and
final) external states of closed or open strings, respec-
tively, on their mass shell.

This description would look abstract at first sight, but
it is not difficult to capture basic concept if one imag-
ines an analogy with the notion of a particle propaga-
tor in ordinary quantum mechanics. In the latter case,
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it is not difficult to capture basic concept if one imag-
ines an analogy with the notion of a particle propaga-
tor in ordinary quantum mechanics. In the latter case,

- Channel (s-t) duality
- Regge behavior
- narrow-resonance 
  approximation

spectrum of relativistic open strings

Similar formula (Virasoro, Shapiro), corresponding to closed strings
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nism, renormalizabilty, quark confinement, and quantum
anomaly.

In the case of string theory, we have not yet arrived
at any satisfactory non-perturbative definition of string
theory, nor at primordial principles governing its struc-
ture. In spite of such an obscure status with respect to
its ultimate fate, it seems fair to say that string theory
has already provided us an entirely new perspective on
how gravity could be unified with other interactions on
the basis of quantum theory of strings and associated
branes. It also suggested a new viewpoint on the dynam-
ics of gauge-field theories in a way which has never been
envisaged without unification with general relativity via
string theory.

In this article, we try to convey the present situation
of string theory to physicists who are working in other
research fields than particle physics, explaining several
key ingredients of string theory and reviewing some of
important developments without technical details. For
mathematical expressions, we use the natural units in
which ! = 1 and c = 1 throughout this article.

2. Perturbative formulation of string theory
2.1 Discovery of relativistic strings

String theory evolved from a proposal made in the late
60s for a particular 2↔2 scattering amplitude, called the
‘Veneziano formula’,2 of mesons which satisfies a special
symmetry requirement called s-t ‘channel’ duality. The
latter demands that the amplitude is composed of ele-
ments such as the formula

V (s, t) =
∫ 1

0
dx x−α′s−α0−1(1 − x)−α′t−α0−1 (1)

which can equally be described by exchanges of particles
between two interacting particles

V (s, t) =
∞∑

n=0

rn(s)
t − m2

n

=
∞∑

n=0

rn(t)
s − m2

n

(2)

(first equality, ‘t-channel’ description) or through forma-
tion of resonance-like states (second equality, ‘s-channel’
description). Here, s and t are Lorentz invariant combina-
tions of energy-momenta s = −(p1+p2)2, t = −(p2+p3)2,
and α′ and α0 are two parameters. It soon turned out3
that this amplitude and its various generalizations can
be interpreted in terms of the dynamics of relativistic
open strings propagating space-time, provided α0 = 1.
The analogous amplitudes4 which correspond to closed
strings were also constructed.

For example, the pole singularities at s or t = m2
n =

(n− 1)/α′ are interpreted as representing possible states
of strings with definite (mass)2. There are an infinite
number of them corresponding to various vibrational
and rotational modes of strings. Actually, it also turned
that for completely consistent formulations of quantum
string theory,5 it is necessary that the space-time dimen-
sions must be at some particular value (critical dimen-
sions), 26, or if we want to include space-time (and world-
sheet) fermions6 consistently, at 10. In the latter case we
can eliminate the tachyonic ground state with negative
(mass)2 with n = 0, by demanding space-time supersym-
metries.7 This is the origin of the naming, superstring

theory. It was also understood that closed strings can
actually be generated by open strings, since one-loop am-
plitudes of open strings necessarily contain singularities
corresponding to the propagation of closed strings. In
other words, the s-t channel duality extended to loop am-
plitudes of strings implies that closed strings are channel-
dual to both open and closed strings.

2.2 World-sheet quantum mechanics of strings
We can formulate quantum string dynamics using a

path-integral over all possible configurations of world
sheets swept out by strings in space-time. In a symbolic
and abbreviated notation, the amplitudes are expressed
as

∑

{Σ}

g−χ(Σ)
s

∫

M
[dXdψ] exp

(
− 1

4πα′SΣ[X,ψ]
)

(3)

where the symbol {Σ} denotes the set of all in-equivalent
(two-dimensional) Riemann surfaces, and M is the set
of configurations of world sheets, described by fields
X,ψ, . . . defined on the Riemann surface. The manner
of how the constant α′ appears in this expression shows
that 1/α′ is essentially proportional to the energy, or ten-
sion, of the string per unit of length. As in the usual path
integrals, we have to specify some boundary conditions
corresponding to the initial and final states, which are
suppressed in the present symbolic notation. The action
SΣ is an integral over a given Riemann surface Σ and
takes the form∫

Σ
d2ξ L(X, ∂ξX,ψ, ∂ξψ, . . .)

with

L = gµν(X)∂z̄X
µ∂zX

ν + · · · (4)

where (ξ1, ξ2) with z = ξ1 + iξ2, z̄ = ξ1 − iξ2 are two-
dimensional coordinates parametrizing the Riemann sur-
face Σ. The space-time coordinates of strings are repre-
sented by fields Xµ(ξ) (µ = 1, 2, . . . , d − 1, 0 with last
index 0 being the time direction) on Σ, and gµν(X)
is the metric tensor of target space-time. The addi-
tional field variable ψ in (3) designates all other nec-
essary fields, which are used to describe non-orbital de-
grees of freedom, such as spins, associated with strings.
The constant gs, called string coupling constant, speci-
fies the weight of Riemann surfaces with various differ-
ent topologies. It is well known that the topologies of
Riemann surfaces are classified by the numbers of han-
dles and boundaries, (h and b respectively). The symbol
χ(Σ) ≡ 2 − 2h − b − pc − po/2 is the Euler number of
Riemann surface fixed by topology, with additional infor-
mation about the numbers, pc and/or po, of ‘punctures’
inserted in the bulk of Σ and/or on the boundaries, re-
spectively. The punctures essentially amount to attach-
ing infinite Riemann surfaces of cylinder topology (pc) or
of strip topology (po), which correspond to (initial and
final) external states of closed or open strings, respec-
tively, on their mass shell.

This description would look abstract at first sight, but
it is not difficult to capture basic concept if one imag-
ines an analogy with the notion of a particle propaga-
tor in ordinary quantum mechanics. In the latter case,
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is the metric tensor of target space-time. The addi-
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essary fields, which are used to describe non-orbital de-
grees of freedom, such as spins, associated with strings.
The constant gs, called string coupling constant, speci-
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inserted in the bulk of Σ and/or on the boundaries, re-
spectively. The punctures essentially amount to attach-
ing infinite Riemann surfaces of cylinder topology (pc) or
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poles at

=

String interpretation in terms of factorization (南部、Susskind), 

     and through electric circuit analogy (Nielsen)

 Unitarization program (吉川-崎田-Virasoro)
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Developments related to field-theory /string connection  (‘70s)

`Fishnet’ diagram interpretation, Nielsen-Olesen vortex
Derivation of gauge theory, general relativity and supergravity from strings in the zero-
slope limit                 gravity and unification
Construction of various supersymmetric gauge and gravity theories
String picture from strong-coupling lattice gauge theory
t` Hooft’s large N limit

1984~1989  First revolution in string theory

Green-Schwarz anomaly cancelation
Five consistent perturbative string vacua (I, IIA, IIB, 2xHetro) in 10D
Compactifications(T-duality, Calabi-Yau, ....), new connections to mathematics
CFT technique, renormalization group interpretation

1970 ~ 1978 
   Initial developments of string theory    (models for hadronic interactions)

Nambu-Goto action
Light-cone quantization, no-ghost theorem, critical dimensions (26 or 10)
Ultraviolet finiteness (modular invariance)
Neveu-Schwarz-Ramond model (inclusion of “G”-partiry and fermionic degrees of freedom)
Space-time supersymmetry
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1990~1994  Development of “old” matrix models and related models

 Double scaling limit
c=1 strings, 2D gravity, ‘non-critical’ strings
topological field theories and strings

1995~1999   Second revolution in string theory

discovery of D-branes
statistical interpretation of black-hole entropy in the BPS or near-BPS limits
conjecture of M-theory
New matrix models (BFSS, IKKT), supermembranes, M(atrix) theory conjecture, ..... 
AdS/CFT correspondence, GKPW relation, ....
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1990~1994  Development of “old” matrix models and related models

 Double scaling limit
c=1 strings, 2D gravity, ‘non-critical’ strings
topological field theories and strings

1995~1999   Second revolution in string theory

discovery of D-branes
statistical interpretation of black-hole entropy in the BPS or near-BPS limits
conjecture of M-theory
New matrix models (BFSS, IKKT), supermembranes, M(atrix) theory conjecture, ..... 
AdS/CFT correspondence, GKPW relation, ....

General idea of gauge-gravity correspondence

unification of two old ideas on strings from the 70s ?

hadronic strings for quark confinement from gauge theory
string theory for ultimate unification as an extension of general relativity

present
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弦理論とは何か

相互作用の統一：　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　

重力を含めたすべての基本的相互作用と物質の基本構造の統一的理解

力学法則の統一：　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　
一般相対性理論と量子論の枠組みを統一

重力を含む統一理論の候補としての弦の発見は　ある意味で偶然！

また、現状では、弦理論は統一のための「材料」が用意されているだけで、

まだ、どういう原理に支配されているのか,および、実験との直接的結びつきが

わからない　“rules of the game” にすぎない。

しかし，弦理論の内容が解明されるにつれ，量子場理論の自然な拡張として極めて自然であり，

これまで場の量子論の枠内で考えられてきた様々な　統一へのアイデアのほとんどすべて　

が，弦-Dブレーンを通じてつながり，それらが渾然一体になった，
ある必然性を持った新たな枠組み の存在を強く示唆

　　　unification of  “ideas” or “methodologies” !

弦理論は何を成しとげる可能性があるか
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Einstein: General 
Relativity

Weyl

Kaluza
Klein

Quantum Field
Theory

Gauge 
Principle

Quantum 
Mechanics

Super 
Symmetry

Supergravity

Yang-Mills 
Theory

Superstring
M-theory

Standard
Model

Black hole 
Unitarity puzzle   

(information problem)

UV problem
Nonrenormalizability

Gauge/string
Correspondence

‘holography’

Web of Unification
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しかし，現状では未完成でかつ発展途上の「理論」

高次元（１０＝９＋１）時空における特定の背景上での摂動論的定義
（generalized Feynman rule)しかなされていない. 

　　　　かつ、平坦な低次元時空を与える摂動的解（コンパクト化）は実は無限にある。

非摂動的定義が準拠すべき「原理」が知られていない．

S行列以外に有意味な物理量が定義できるかどうか不明．　　　　　　　　　

弦理論の性格は、量子力学に対する前期量子論の段階に似ている
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弦理論の最も顕著な性質

弦の相対論的量子論から，必然的に「重力＝一般相対性理論」(~時空の熱力学）

   および「ゲージ相互作用」が導かれる(粒子スペクトル、運動、相互作用が統一）

　　これにより、従来の場の理論の枠内からは予想できなかった、

      全く新たな展望が開かれている（ゲージ／重力対応）

弦理論が現実の宇宙を説明できるかどうかは、いまのところは不明だが、

    重力のミクロレベル理論としての資格をそなえている

　　　　  ! ラフ スケッチとして現実の相互作用の大枠を予言している !

本質的に closed system として扱わなければならない　　

弦の量子論では、局所性は根本的にくずれる 　

局所場の量子論では不可避な紫外破綻が解消されている．

現代物理学の枠組みの基本的欠陥

展望へ . . .
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非局所理論として、根本的欠陥がない唯一の理論　　　　　　　　　　　　　　　　　　　　　

摂動的な定式化しか知られていないが、紫外破綻を解決した非局

所的な相互作用の定式化に関して、

  相対論の対称性と量子力学の unitary 性とを矛盾せずに両立  

  させ、非摂動的定式化を得る方向

を強く示唆している。

もともと、局所量子場には概念的困難がある　( Landau-Peierls, ....., 湯川, ......)

重力以外の相互作用については、繰り込み理論によって実用的な摂動的定式化が

存在する．しかし、重力相互作用を考慮すると繰り込み理論は破綻する

（ultraviolet catastrophe & unitarity violation)

note: N=8 4D sugra の finiteness conjecture ? 　　　　　　　　　　　　　　　　　　　　　　　　　

(もし正しいとしても、susy だけでは説明できないし、その正則化は、弦理論に

埋め込む以外にないと思われる）

しかし、非局所性の性格に関しては、ここ２０年ほど本質的な理解の進展が
なされたかどうかは疑問
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 非局所性を非摂動的にどう特徴づけるか？

 Background independence の問題

・　時空の不確定性関係　(T. Y., 1987,  .....)
           D-brane の力学における特徴的スケールの定性的理解に有効であることが
　　　　　　　９０年代後半に判明、しかし、その厳密な数学的定式化については未だ明確ではない。

・　minimal length (D. Gross, G. Veneziano, 1987, ....)
　　　　　摂動振幅の超高エネルギーの振る舞いにもとづき提案、しかし。
　　　　　　　Dブレーンにも有効であるかどうか、および摂動の高次効果を
　　　　　　　取り入れても有効かどうか、疑問

・　purely cubic action シナリオ

      T. Y., ICOBAN’86 International conference on grand unification (富山）
      の review talkで提唱(および、85年１２月基研研究会）　
　　　　　　　　　Friedan, Witten 等も独立に同様なアイデアを提唱している

       realization の試みとして
     　        Hata-Ito-Kugo-Kunitomo-Ogawa, PL 175B, 138(1986)
       　　　 Horowitz-Lykken-Rohm-Strominger, PRL 57, 283(1986)

           .........
　　　この２つは、「弦理論の原理は何か」と絡む、弦理論のもっとも深い未解決問題

　　　　　　しかし、特に後者に関しては、
「string field が弦理論/M理論の真の基本的自由度なのかどうか」明確ではない
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purely cubic action conjecture 

弦理論においては、運動と相互作用が完全に統一
されていることの反映として、作用原理は、
background independent な相互作用項だけで
表されるべき。

∼ g−1/(3−p)
s !s ∼ g1/(3−p)

s !s

p "= 3 p = 3

|δx| ! !
|δp| +

!2
s|δp|
! ≥ !s

λ = !2
s

Spartilce =

∫
dξ

(
pµ

dxµ

dξ
+ e(p2 + m2)

)

"= 0

+ ζ

ηi → ηi + 〈ζ i〉

det〈vi, vj〉

φ3

S =
1

6
〈ψ3〉 → SWitten = 〈1

2
ψ̃ψcψ̃ +

1

6
ψ̃3〉

ψ2
c = 0, ψ = ψc + ψ̃

30
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時空不確定性関係：通常の量子力学における時間・エネルギー不確

定性関係からの再解釈

!P =
√

h = f(Φ)!s

f(Φ) = exp (2φ/(D − 2))

gs = eφ

α′ = !2
s

pc = 4 g = 0 g = 1 g = 2 2g

Ω = Ω1 + Ω2, Ω1 ∩ Ω2 = ∅

∆E∆t ! h

∆E ∼ ∆X
h

!2
s

∆t = ∆T
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Space-Time Uncertainty Principle 5

the violation of unitarity and/or locality. However, string perturbation theory is
perfectly consistent with (perturbative) unitarity, preserving all the important ax-
ioms for a physically acceptable S-matrix, including the analyticity property of the
S-matrix. It should be recalled that the analyticity of the S-matrix is customarily
attributed to locality, in addition to unitarity, of quantum field theories. However,
locality is usually not expected to be valid in theories with extended objects. From
this point of view, it is not at all trivial to understand why string theory is free from
the ultraviolet difficulty, and it is important to give correct interpretations to its
mechanism.

2.1. A reinterpretation of energy-time uncertainty relation in terms of strings
The approach which was proposed in Ref. 18) is to reinterpret the ordinary

energy-time uncertainty relation in terms of the space-time extension of strings:∗)

∆E∆t >∼ 1. (2.1)

The basic reason why we have ultraviolet divergencies in local quantum field theories
is that in the short time region, ∆t → 0, the uncertainty with respect to energy
increases indefinitely: ∆E ∼ 1/∆t → ∞. This in turn induces a large uncertainty
in momentum ∆p ∼ ∆E. The large uncertainty in the momentum implies that
the number of particles states allowed in the short distance region ∆x ∼ 1/∆p
grows indefinitely as (∆E)D−1 in D-dimensional space-time. In ordinary local field
theories, where there is no cutoff built-in, all these states are expected to contribute
to amplitudes with equal strengths. This consequently leads to UV infinities.

What is the difference, in string theory, regarding this general argument? Actu-
ally, the number of the allowed states with a large energy uncertainty ∆E behaves
as ek!s∆E ∼ ek!s/∆t with some positive coefficient k, and "s ∝

√
α′ being the string

length constant, where α′ is the traditional slope parameter. This increase of the
degeneracy is much faster than that in local field theories. The crucial difference
with local field theories, however, is that the dominant string states among these ex-
ponentially degenerate states are not the states with large center-of-mass momenta,
but can be the massive states with higher excitation modes along strings. The excita-
tion of higher modes along strings contributes to the large spatial extension of string
states. It seems reasonable to expect that this effect completely cancels the short dis-
tance effect with respect to the center-of-mass coordinates of strings, provided that
these higher modes contribute appreciably to physical processes. Since the order of
magnitude of the spatial extension corresponding to a large energy uncertainty ∆E
is expected to behave as ∆X ∼ "2

s∆E, we are led to a remarkably simple relation for
the order of magnitude ∆X for fluctuations along spatial directions of string states
participating within the time interval ∆T = ∆t of interactions:

∆X∆T >∼ "2
s. (2.2)

It is natural to call this relation the ‘space-time uncertainty relation’. It should be
emphasized that this relation is not a modification of the usual uncertainty relation,

∗) Throughout the present paper, we use units in which h̄ = 1, c = 1.In “Wandering in the fields”, Vol. in honor of 
the 60th birthday of Prof. Nishijima,
World Scientific, 1987
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弦定数の特徴づけは何か　－　「時空」自身の不確定性原理　                       　

Space-Time Uncertainty Principle 11

and space components, we have

√
〈−[X0, Xi]2〉 =

√
1
2
〈−[Xi, Xj ]2〉 + !4

s
>∼ !2

s. (2.6)

This shows that the inequality (2.2) of the space-time uncertainty relation can in
principle be consistent with Lorentz invariance, conforming to the first argument.
This also suggests a possible definition of the proper frame such that the noncom-
mutativity of space-like operators is minimized. To avoid a possible misconception,
however, it should be noted that the present formal argument is not meant to imply
that the author is proposing that the operator constraint (2.5) is the right way for
realizing the space-time uncertainty principle. In particular, it is not at all obvious
whether the uncertainties can be defined using Lorentz vectors, since they are not
local fields. Here it is only used for an illustrative purpose to show schematically the
compatibility of the space-time uncertainty relation with Lorentz invariance. There
might be better way of formulating the principle in a manifestly Lorentz invari-
ant manner. We will later present a related discussion (§5) from the viewpoint of
noncommutative geometric quantization of strings based on the Schild action.

2.3. Conformal symmetry and the space-time uncertainty relation
For the sake of completeness, we now explain an independent derivation of the

space-time uncertainty relation on the basis of conformal invariance of the world-
sheet string dynamics, following an old work. 19) This derivation seems to support
our proposal that the space-time uncertainty relation should be valid universally in
both short-time and long-time limits.

All the string amplitudes are formulated in terms of path integrals as weighted
mappings from the set of all possible Riemann surfaces to a target space-time. There-
fore, any characteristic property of the string amplitudes can be understood from
the property of this path integral. The absence of the ultraviolet divergences in
string theory from this point of view is a consequence of the modular invariance. We
will see that the space-time uncertainty relation (2.2) can be regarded as a natural
generalization of the modular invariance for arbitrary string amplitudes in terms of
the direct space-time language.

Let us start by briefly recalling how to define the distance on a Riemann surface
in a conformally invariant manner. For a given Riemannian metric ds = ρ(z, z)|dz|,
an arc γ on the Riemann surface has length L(γ, ρ) =

∫
γ ρ|dz|. This length is, how-

ever, dependent on the choice of the metric function ρ. If we consider some finite
region Ω and a set of arcs defined on Ω, the following definition, called the ‘extremal
length’ in mathematical literature, 27) is known to give a conformally invariant defi-
nition for the length of the set Γ of arcs:

λΩ(Γ ) = sup
ρ

L(Γ, ρ)2

A(Ω, ρ)
(2.7)

with
L(Γ, ρ) = inf
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∫

Ω
ρ2dzdz.

Space-Time Uncertainty Principle 11

and space components, we have

√
〈−[X0, Xi]2〉 =

√
1
2
〈−[Xi, Xj ]2〉 + !4

s
>∼ !2

s. (2.6)

This shows that the inequality (2.2) of the space-time uncertainty relation can in
principle be consistent with Lorentz invariance, conforming to the first argument.
This also suggests a possible definition of the proper frame such that the noncom-
mutativity of space-like operators is minimized. To avoid a possible misconception,
however, it should be noted that the present formal argument is not meant to imply
that the author is proposing that the operator constraint (2.5) is the right way for
realizing the space-time uncertainty principle. In particular, it is not at all obvious
whether the uncertainties can be defined using Lorentz vectors, since they are not
local fields. Here it is only used for an illustrative purpose to show schematically the
compatibility of the space-time uncertainty relation with Lorentz invariance. There
might be better way of formulating the principle in a manifestly Lorentz invari-
ant manner. We will later present a related discussion (§5) from the viewpoint of
noncommutative geometric quantization of strings based on the Schild action.

2.3. Conformal symmetry and the space-time uncertainty relation
For the sake of completeness, we now explain an independent derivation of the

space-time uncertainty relation on the basis of conformal invariance of the world-
sheet string dynamics, following an old work. 19) This derivation seems to support
our proposal that the space-time uncertainty relation should be valid universally in
both short-time and long-time limits.

All the string amplitudes are formulated in terms of path integrals as weighted
mappings from the set of all possible Riemann surfaces to a target space-time. There-
fore, any characteristic property of the string amplitudes can be understood from
the property of this path integral. The absence of the ultraviolet divergences in
string theory from this point of view is a consequence of the modular invariance. We
will see that the space-time uncertainty relation (2.2) can be regarded as a natural
generalization of the modular invariance for arbitrary string amplitudes in terms of
the direct space-time language.

Let us start by briefly recalling how to define the distance on a Riemann surface
in a conformally invariant manner. For a given Riemannian metric ds = ρ(z, z)|dz|,
an arc γ on the Riemann surface has length L(γ, ρ) =

∫
γ ρ|dz|. This length is, how-

ever, dependent on the choice of the metric function ρ. If we consider some finite
region Ω and a set of arcs defined on Ω, the following definition, called the ‘extremal
length’ in mathematical literature, 27) is known to give a conformally invariant defi-
nition for the length of the set Γ of arcs:

λΩ(Γ ) = sup
ρ

L(Γ, ρ)2

A(Ω, ρ)
(2.7)

with
L(Γ, ρ) = inf

γ∈Γ
L(γ, ρ), A(Ω, ρ) =

∫

Ω
ρ2dzdz.

Space-Time Uncertainty Principle 11

and space components, we have

√
〈−[X0, Xi]2〉 =

√
1
2
〈−[Xi, Xj ]2〉 + !4

s
>∼ !2

s. (2.6)

This shows that the inequality (2.2) of the space-time uncertainty relation can in
principle be consistent with Lorentz invariance, conforming to the first argument.
This also suggests a possible definition of the proper frame such that the noncom-
mutativity of space-like operators is minimized. To avoid a possible misconception,
however, it should be noted that the present formal argument is not meant to imply
that the author is proposing that the operator constraint (2.5) is the right way for
realizing the space-time uncertainty principle. In particular, it is not at all obvious
whether the uncertainties can be defined using Lorentz vectors, since they are not
local fields. Here it is only used for an illustrative purpose to show schematically the
compatibility of the space-time uncertainty relation with Lorentz invariance. There
might be better way of formulating the principle in a manifestly Lorentz invari-
ant manner. We will later present a related discussion (§5) from the viewpoint of
noncommutative geometric quantization of strings based on the Schild action.

2.3. Conformal symmetry and the space-time uncertainty relation
For the sake of completeness, we now explain an independent derivation of the

space-time uncertainty relation on the basis of conformal invariance of the world-
sheet string dynamics, following an old work. 19) This derivation seems to support
our proposal that the space-time uncertainty relation should be valid universally in
both short-time and long-time limits.

All the string amplitudes are formulated in terms of path integrals as weighted
mappings from the set of all possible Riemann surfaces to a target space-time. There-
fore, any characteristic property of the string amplitudes can be understood from
the property of this path integral. The absence of the ultraviolet divergences in
string theory from this point of view is a consequence of the modular invariance. We
will see that the space-time uncertainty relation (2.2) can be regarded as a natural
generalization of the modular invariance for arbitrary string amplitudes in terms of
the direct space-time language.

Let us start by briefly recalling how to define the distance on a Riemann surface
in a conformally invariant manner. For a given Riemannian metric ds = ρ(z, z)|dz|,
an arc γ on the Riemann surface has length L(γ, ρ) =

∫
γ ρ|dz|. This length is, how-

ever, dependent on the choice of the metric function ρ. If we consider some finite
region Ω and a set of arcs defined on Ω, the following definition, called the ‘extremal
length’ in mathematical literature, 27) is known to give a conformally invariant defi-
nition for the length of the set Γ of arcs:

λΩ(Γ ) = sup
ρ

L(Γ, ρ)2

A(Ω, ρ)
(2.7)

with
L(Γ, ρ) = inf

γ∈Γ
L(γ, ρ), A(Ω, ρ) =

∫

Ω
ρ2dzdz.

Space-Time Uncertainty Principle 11

and space components, we have

√
〈−[X0, Xi]2〉 =

√
1
2
〈−[Xi, Xj ]2〉 + !4

s
>∼ !2

s. (2.6)

This shows that the inequality (2.2) of the space-time uncertainty relation can in
principle be consistent with Lorentz invariance, conforming to the first argument.
This also suggests a possible definition of the proper frame such that the noncom-
mutativity of space-like operators is minimized. To avoid a possible misconception,
however, it should be noted that the present formal argument is not meant to imply
that the author is proposing that the operator constraint (2.5) is the right way for
realizing the space-time uncertainty principle. In particular, it is not at all obvious
whether the uncertainties can be defined using Lorentz vectors, since they are not
local fields. Here it is only used for an illustrative purpose to show schematically the
compatibility of the space-time uncertainty relation with Lorentz invariance. There
might be better way of formulating the principle in a manifestly Lorentz invari-
ant manner. We will later present a related discussion (§5) from the viewpoint of
noncommutative geometric quantization of strings based on the Schild action.

2.3. Conformal symmetry and the space-time uncertainty relation
For the sake of completeness, we now explain an independent derivation of the

space-time uncertainty relation on the basis of conformal invariance of the world-
sheet string dynamics, following an old work. 19) This derivation seems to support
our proposal that the space-time uncertainty relation should be valid universally in
both short-time and long-time limits.

All the string amplitudes are formulated in terms of path integrals as weighted
mappings from the set of all possible Riemann surfaces to a target space-time. There-
fore, any characteristic property of the string amplitudes can be understood from
the property of this path integral. The absence of the ultraviolet divergences in
string theory from this point of view is a consequence of the modular invariance. We
will see that the space-time uncertainty relation (2.2) can be regarded as a natural
generalization of the modular invariance for arbitrary string amplitudes in terms of
the direct space-time language.

Let us start by briefly recalling how to define the distance on a Riemann surface
in a conformally invariant manner. For a given Riemannian metric ds = ρ(z, z)|dz|,
an arc γ on the Riemann surface has length L(γ, ρ) =

∫
γ ρ|dz|. This length is, how-

ever, dependent on the choice of the metric function ρ. If we consider some finite
region Ω and a set of arcs defined on Ω, the following definition, called the ‘extremal
length’ in mathematical literature, 27) is known to give a conformally invariant defi-
nition for the length of the set Γ of arcs:

λΩ(Γ ) = sup
ρ

L(Γ, ρ)2

A(Ω, ρ)
(2.7)

with
L(Γ, ρ) = inf

γ∈Γ
L(γ, ρ), A(Ω, ρ) =

∫

Ω
ρ2dzdz.

Space-Time Uncertainty Principle 11

and space components, we have

√
〈−[X0, Xi]2〉 =

√
1
2
〈−[Xi, Xj ]2〉 + !4

s
>∼ !2

s. (2.6)

This shows that the inequality (2.2) of the space-time uncertainty relation can in
principle be consistent with Lorentz invariance, conforming to the first argument.
This also suggests a possible definition of the proper frame such that the noncom-
mutativity of space-like operators is minimized. To avoid a possible misconception,
however, it should be noted that the present formal argument is not meant to imply
that the author is proposing that the operator constraint (2.5) is the right way for
realizing the space-time uncertainty principle. In particular, it is not at all obvious
whether the uncertainties can be defined using Lorentz vectors, since they are not
local fields. Here it is only used for an illustrative purpose to show schematically the
compatibility of the space-time uncertainty relation with Lorentz invariance. There
might be better way of formulating the principle in a manifestly Lorentz invari-
ant manner. We will later present a related discussion (§5) from the viewpoint of
noncommutative geometric quantization of strings based on the Schild action.

2.3. Conformal symmetry and the space-time uncertainty relation
For the sake of completeness, we now explain an independent derivation of the

space-time uncertainty relation on the basis of conformal invariance of the world-
sheet string dynamics, following an old work. 19) This derivation seems to support
our proposal that the space-time uncertainty relation should be valid universally in
both short-time and long-time limits.

All the string amplitudes are formulated in terms of path integrals as weighted
mappings from the set of all possible Riemann surfaces to a target space-time. There-
fore, any characteristic property of the string amplitudes can be understood from
the property of this path integral. The absence of the ultraviolet divergences in
string theory from this point of view is a consequence of the modular invariance. We
will see that the space-time uncertainty relation (2.2) can be regarded as a natural
generalization of the modular invariance for arbitrary string amplitudes in terms of
the direct space-time language.

Let us start by briefly recalling how to define the distance on a Riemann surface
in a conformally invariant manner. For a given Riemannian metric ds = ρ(z, z)|dz|,
an arc γ on the Riemann surface has length L(γ, ρ) =

∫
γ ρ|dz|. This length is, how-

ever, dependent on the choice of the metric function ρ. If we consider some finite
region Ω and a set of arcs defined on Ω, the following definition, called the ‘extremal
length’ in mathematical literature, 27) is known to give a conformally invariant defi-
nition for the length of the set Γ of arcs:

λΩ(Γ ) = sup
ρ

L(Γ, ρ)2

A(Ω, ρ)
(2.7)

with
L(Γ, ρ) = inf

γ∈Γ
L(γ, ρ), A(Ω, ρ) =

∫

Ω
ρ2dzdz.

任意に選んだ２次元面計量

領域上の開曲線の集合

Space-Time Uncertainty Principle 11

and space components, we have

√
〈−[X0, Xi]2〉 =

√
1
2
〈−[Xi, Xj ]2〉 + !4

s
>∼ !2

s. (2.6)

This shows that the inequality (2.2) of the space-time uncertainty relation can in
principle be consistent with Lorentz invariance, conforming to the first argument.
This also suggests a possible definition of the proper frame such that the noncom-
mutativity of space-like operators is minimized. To avoid a possible misconception,
however, it should be noted that the present formal argument is not meant to imply
that the author is proposing that the operator constraint (2.5) is the right way for
realizing the space-time uncertainty principle. In particular, it is not at all obvious
whether the uncertainties can be defined using Lorentz vectors, since they are not
local fields. Here it is only used for an illustrative purpose to show schematically the
compatibility of the space-time uncertainty relation with Lorentz invariance. There
might be better way of formulating the principle in a manifestly Lorentz invari-
ant manner. We will later present a related discussion (§5) from the viewpoint of
noncommutative geometric quantization of strings based on the Schild action.

2.3. Conformal symmetry and the space-time uncertainty relation
For the sake of completeness, we now explain an independent derivation of the

space-time uncertainty relation on the basis of conformal invariance of the world-
sheet string dynamics, following an old work. 19) This derivation seems to support
our proposal that the space-time uncertainty relation should be valid universally in
both short-time and long-time limits.

All the string amplitudes are formulated in terms of path integrals as weighted
mappings from the set of all possible Riemann surfaces to a target space-time. There-
fore, any characteristic property of the string amplitudes can be understood from
the property of this path integral. The absence of the ultraviolet divergences in
string theory from this point of view is a consequence of the modular invariance. We
will see that the space-time uncertainty relation (2.2) can be regarded as a natural
generalization of the modular invariance for arbitrary string amplitudes in terms of
the direct space-time language.

Let us start by briefly recalling how to define the distance on a Riemann surface
in a conformally invariant manner. For a given Riemannian metric ds = ρ(z, z)|dz|,
an arc γ on the Riemann surface has length L(γ, ρ) =

∫
γ ρ|dz|. This length is, how-

ever, dependent on the choice of the metric function ρ. If we consider some finite
region Ω and a set of arcs defined on Ω, the following definition, called the ‘extremal
length’ in mathematical literature, 27) is known to give a conformally invariant defi-
nition for the length of the set Γ of arcs:

λΩ(Γ ) = sup
ρ

L(Γ, ρ)2

A(Ω, ρ)
(2.7)

with
L(Γ, ρ) = inf

γ∈Γ
L(γ, ρ), A(Ω, ρ) =

∫

Ω
ρ2dzdz.

弦が基本的自由度であるから，時空の構造自身も弦の相互作用を通じてのみプロー
ブしなければならない． test particle を外部から探針として導入できない．

　　　弦の相互作用＝散乱振幅は
　　　　　　　 Riemann 面の共形不変性によって支配されている．
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リーマン面上の任意の開領域　　　の「長さ」を表す共形不変量＝ extremal length
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Since any Riemann surface corresponding to a string amplitude can be decomposed
into a set of quadrilaterals pasted along the boundaries (with some twisting oper-
ations, in general), it is sufficient to consider the extremal length for an arbitrary
quadrilateral segment Ω. Let the two pairs of opposite sides of Ω be α,α′ and β,β′.
Take Γ be the set of all connected set of arcs joining α and α′. We also define the
conjugate set of arcs Γ ∗ be the set of arcs joining β and β′. We then have two
extremal distances, λΩ(Γ ) and λΩ(Γ ∗). The important property of the extremal
length for us is the reciprocity

λΩ(Γ )λΩ(Γ ∗) = 1. (2.8)

Note that this implies that one of the two mutually conjugate extremal lengths is
larger than 1.

The extremal lengths satisfy the composition law, which partially justifies the
naming “extremal length”: Suppose that Ω1 and Ω2 are disjoint but adjacent open
regions on an arbitrary Riemann surface. Let Γ1 and Γ2 consist of arcs in Ω1 and
Ω2, respectively. Let Ω be the union Ω1 + Ω2, and let Γ be a set of arcs on Ω.

1. If every γ ∈ Γ contains a γ1 ∈ Γ1 and γ2 ∈ Γ2, then

λΩ(Γ ) ≥ λΩ1(Γ1) + λΩ2(Γ2).

2. If every γ1 ∈ Γ1 and γ2 ∈ Γ2 contains a γ ∈ Γ , then

1/λΩ(Γ ) ≥ 1/λΩ1(Γ1) + 1/λΩ2(Γ2).

These two cases correspond to two different types of compositions of open regions,
depending on whether the side where Ω1 and Ω2 are joined does not divide the sides
which γ ∈ Γ connects, or do divide, respectively. One consequence of the composition
law is that the extremal length from a point to any finite region is infinite and the
corresponding conjugate length is zero. This corresponds to the fact that the vertex
operators describe the on-shell asymptotic states whose coefficients are represented
by local external fields in space-time. We also recall that the moduli parameters of
world-sheet Riemann surfaces are nothing but a set of extremal lengths with some
associated angle variables, associated with twisting operations, which are necessary
in order to specify the joining of the boundaries of quadrilaterals.

Conformal invariance allows us to conformally map any quadrilateral to a rect-
angle on the Gauss plane. Let the Euclidean lengths of the sides (α,α′) and (β,β′)
be a and b, respectively. Then, the extremal lengths are given by the ratios

λ(Γ ) = a/b, λ(Γ ∗) = b/a. (2.9)

For a proof, see Ref. 27)

Let us now consider how the extremal length is reflected by the space-time
structure probed by general string amplitudes. The euclidean path-integral in the
conformal gauge is essentially governed by the action 1

"2s

∫
Ω dzdz ∂zxµ∂zxµ. Take a

rectangular region as above and the boundary conditions (z = ξ1 + iξ2) as

xµ(0, ξ2) = xµ(a, ξ2) = δµ2Bξ2/b,

xµ(ξ1, 0) = xµ(ξ1, b) = δµ1Aξ1/a.
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regions on an arbitrary Riemann surface. Let Γ1 and Γ2 consist of arcs in Ω1 and
Ω2, respectively. Let Ω be the union Ω1 + Ω2, and let Γ be a set of arcs on Ω.

1. If every γ ∈ Γ contains a γ1 ∈ Γ1 and γ2 ∈ Γ2, then
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2. If every γ1 ∈ Γ1 and γ2 ∈ Γ2 contains a γ ∈ Γ , then
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depending on whether the side where Ω1 and Ω2 are joined does not divide the sides
which γ ∈ Γ connects, or do divide, respectively. One consequence of the composition
law is that the extremal length from a point to any finite region is infinite and the
corresponding conjugate length is zero. This corresponds to the fact that the vertex
operators describe the on-shell asymptotic states whose coefficients are represented
by local external fields in space-time. We also recall that the moduli parameters of
world-sheet Riemann surfaces are nothing but a set of extremal lengths with some
associated angle variables, associated with twisting operations, which are necessary
in order to specify the joining of the boundaries of quadrilaterals.

Conformal invariance allows us to conformally map any quadrilateral to a rect-
angle on the Gauss plane. Let the Euclidean lengths of the sides (α,α′) and (β,β′)
be a and b, respectively. Then, the extremal lengths are given by the ratios

λ(Γ ) = a/b, λ(Γ ∗) = b/a. (2.9)

For a proof, see Ref. 27)

Let us now consider how the extremal length is reflected by the space-time
structure probed by general string amplitudes. The euclidean path-integral in the
conformal gauge is essentially governed by the action 1

"2s

∫
Ω dzdz ∂zxµ∂zxµ. Take a

rectangular region as above and the boundary conditions (z = ξ1 + iξ2) as

xµ(0, ξ2) = xµ(a, ξ2) = δµ2Bξ2/b,

xµ(ξ1, 0) = xµ(ξ1, b) = δµ1Aξ1/a.
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Space-Time Uncertainty Principle 13

The boundary conditions are chosen such that the kinematical momentum constraint
∂1xµ · ∂2xµ = 0 in the conformal gauge is satisfied for the classical solution.∗) The
path integral then contains the factor

exp
[
− 1

"2
s

(
A2

λ(Γ )
+

B2

λ(Γ ∗)

)]
.

This indicates that the square root of extremal length can be used as the measure
of the length probed by strings in space-time. The appearance of the square root is
natural, as suggested from the definition (2.7):

∆A =
√
〈A2〉 ∼

√
λ(Γ )"s, ∆B =

√
〈B2〉 ∼

√
λ(Γ )"s.

In particular, this implies that probing short distances along both directions si-
multaneously is always restricted by the reciprocity property (2.8) of the extremal
length, ∆A∆B ∼ "2

s. In Minkowski metric, one of the directions is time-like and
the other is space-like, as required by the momentum constraint. This conforms to
the space-time uncertainty relation, as derived in the previous subsection from a
very naive argument. Also note that the present discussion clearly shows that the
space-time uncertainty relation is a natural generalization of modular invariance, or
of open-closed string duality, exhibited by the string loop amplitudes.

Since our derivation relies on conformal symmetry and is applicable to arbi-
trary quadrilaterals on arbitrary Riemann surfaces, which in turn can always be
constructed by pasting quadrilaterals appropriately, we expect that the space-time
uncertainty relation is robust with respect to possible corrections to the simple setup
of the present argument. In particular, the relation, being independent of the string
coupling, is expected to be universally valid to all orders of string perturbation the-
ory. Since the string coupling cannot be regarded as the fundamental parameter of
nonperturbative string theory, it is natural to expect that any universal principle
should be formulated independently of the string coupling.

We have assumed a smooth boundary condition at the boundary of the rectan-
gle. This leads to a saturation of the inequality of the uncertainty relation. If we
allow more complicated ‘zigzag’ shapes for boundaries, it is not possible to establish
such a simple relation as that above between the extremal distance and the space-
time uncertainties. However, we can expect that the mean values of the space-time
distances measured along the boundaries of complicated shapes in general increase,
due to the entropy effect, in comparison with the case of smooth boundaries (namely
the zero mode) obtained as the average of given zigzag curves. Although there is no
general proof, any reasonable definition of the expectation value of the space-time
distances conforms to this expectation, since the fluctuations contribute positively
to the expectation value. Thus the inequality (2.2) should be the general expression
of the reciprocity relation (2.8) in a direct space-time picture. Since the relation
is symmetric under the interchange Γ ↔ Γ ∗, it is reasonable to suppose that the
space-time uncertainty relation is meaningful in both limits ∆T → 0 and ∆T → ∞,
as we proposed in the previous subsection.

∗) The Hamilton constraint (∂1x)2 = (∂2x)2 is satisfied after integrating over the moduli pa-
rameter, which in the present case of a rectangle is the extremal length itself.
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Since any Riemann surface corresponding to a string amplitude can be decomposed
into a set of quadrilaterals pasted along the boundaries (with some twisting oper-
ations, in general), it is sufficient to consider the extremal length for an arbitrary
quadrilateral segment Ω. Let the two pairs of opposite sides of Ω be α,α′ and β,β′.
Take Γ be the set of all connected set of arcs joining α and α′. We also define the
conjugate set of arcs Γ ∗ be the set of arcs joining β and β′. We then have two
extremal distances, λΩ(Γ ) and λΩ(Γ ∗). The important property of the extremal
length for us is the reciprocity

λΩ(Γ )λΩ(Γ ∗) = 1. (2.8)

Note that this implies that one of the two mutually conjugate extremal lengths is
larger than 1.

The extremal lengths satisfy the composition law, which partially justifies the
naming “extremal length”: Suppose that Ω1 and Ω2 are disjoint but adjacent open
regions on an arbitrary Riemann surface. Let Γ1 and Γ2 consist of arcs in Ω1 and
Ω2, respectively. Let Ω be the union Ω1 + Ω2, and let Γ be a set of arcs on Ω.

1. If every γ ∈ Γ contains a γ1 ∈ Γ1 and γ2 ∈ Γ2, then

λΩ(Γ ) ≥ λΩ1(Γ1) + λΩ2(Γ2).

2. If every γ1 ∈ Γ1 and γ2 ∈ Γ2 contains a γ ∈ Γ , then

1/λΩ(Γ ) ≥ 1/λΩ1(Γ1) + 1/λΩ2(Γ2).

These two cases correspond to two different types of compositions of open regions,
depending on whether the side where Ω1 and Ω2 are joined does not divide the sides
which γ ∈ Γ connects, or do divide, respectively. One consequence of the composition
law is that the extremal length from a point to any finite region is infinite and the
corresponding conjugate length is zero. This corresponds to the fact that the vertex
operators describe the on-shell asymptotic states whose coefficients are represented
by local external fields in space-time. We also recall that the moduli parameters of
world-sheet Riemann surfaces are nothing but a set of extremal lengths with some
associated angle variables, associated with twisting operations, which are necessary
in order to specify the joining of the boundaries of quadrilaterals.

Conformal invariance allows us to conformally map any quadrilateral to a rect-
angle on the Gauss plane. Let the Euclidean lengths of the sides (α,α′) and (β,β′)
be a and b, respectively. Then, the extremal lengths are given by the ratios

λ(Γ ) = a/b, λ(Γ ∗) = b/a. (2.9)

For a proof, see Ref. 27)

Let us now consider how the extremal length is reflected by the space-time
structure probed by general string amplitudes. The euclidean path-integral in the
conformal gauge is essentially governed by the action 1
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∫
Ω dzdz ∂zxµ∂zxµ. Take a

rectangular region as above and the boundary conditions (z = ξ1 + iξ2) as

xµ(0, ξ2) = xµ(a, ξ2) = δµ2Bξ2/b,

xµ(ξ1, 0) = xµ(ξ1, b) = δµ1Aξ1/a.
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この考察から，弦理論においては時空の距離概念に関して、次の
不確定性関係が普遍的に成り立つと予想される．

Space-Time Uncertainty Principle 5

the violation of unitarity and/or locality. However, string perturbation theory is
perfectly consistent with (perturbative) unitarity, preserving all the important ax-
ioms for a physically acceptable S-matrix, including the analyticity property of the
S-matrix. It should be recalled that the analyticity of the S-matrix is customarily
attributed to locality, in addition to unitarity, of quantum field theories. However,
locality is usually not expected to be valid in theories with extended objects. From
this point of view, it is not at all trivial to understand why string theory is free from
the ultraviolet difficulty, and it is important to give correct interpretations to its
mechanism.

2.1. A reinterpretation of energy-time uncertainty relation in terms of strings
The approach which was proposed in Ref. 18) is to reinterpret the ordinary

energy-time uncertainty relation in terms of the space-time extension of strings:∗)

∆E∆t >∼ 1. (2.1)

The basic reason why we have ultraviolet divergencies in local quantum field theories
is that in the short time region, ∆t → 0, the uncertainty with respect to energy
increases indefinitely: ∆E ∼ 1/∆t → ∞. This in turn induces a large uncertainty
in momentum ∆p ∼ ∆E. The large uncertainty in the momentum implies that
the number of particles states allowed in the short distance region ∆x ∼ 1/∆p
grows indefinitely as (∆E)D−1 in D-dimensional space-time. In ordinary local field
theories, where there is no cutoff built-in, all these states are expected to contribute
to amplitudes with equal strengths. This consequently leads to UV infinities.

What is the difference, in string theory, regarding this general argument? Actu-
ally, the number of the allowed states with a large energy uncertainty ∆E behaves
as ek!s∆E ∼ ek!s/∆t with some positive coefficient k, and "s ∝

√
α′ being the string

length constant, where α′ is the traditional slope parameter. This increase of the
degeneracy is much faster than that in local field theories. The crucial difference
with local field theories, however, is that the dominant string states among these ex-
ponentially degenerate states are not the states with large center-of-mass momenta,
but can be the massive states with higher excitation modes along strings. The excita-
tion of higher modes along strings contributes to the large spatial extension of string
states. It seems reasonable to expect that this effect completely cancels the short dis-
tance effect with respect to the center-of-mass coordinates of strings, provided that
these higher modes contribute appreciably to physical processes. Since the order of
magnitude of the spatial extension corresponding to a large energy uncertainty ∆E
is expected to behave as ∆X ∼ "2

s∆E, we are led to a remarkably simple relation for
the order of magnitude ∆X for fluctuations along spatial directions of string states
participating within the time interval ∆T = ∆t of interactions:

∆X∆T >∼ "2
s. (2.2)

It is natural to call this relation the ‘space-time uncertainty relation’. It should be
emphasized that this relation is not a modification of the usual uncertainty relation,

∗) Throughout the present paper, we use units in which h̄ = 1, c = 1.

リーマン面では短距離と長距離が互いに共役の関係にあり，かつ
それらが常に共存している．Minkowski計量では，一方が空間的でもう
一方は時間的方向に対応する．

弦のS行列要素の波束解析によって，直接確かめることができる．

Dブレーンの力学における典型的スケールを定性的に導ける 
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　　の各次数ごとに成り立つ．

Borel 和を取った後　                                  の振幅           　
では，ぼぼ下限が成り立つ

　(large-angle scattering, Mende-Ooguri, 1988) 

　　(D0の場合)
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Fig. 1. This diagram schematically shows the structure of the space-time uncertainty relation and
the black hole uncertainty relation. The critical point is where the two relations meet.

the physics in this region in string theory. The above relation between the space-
time uncertainty relation and the black hole uncertainty relation suggests that in
the strong string-coupling regime and in the region ∆T > ∆Tc(! "s), the black-hole
uncertainty relation essentially governs the physics at long distatances ∆X > RS ,
with RS being the Schwarzschild radius, since RS > "2

s/∆T with ∆T ∼ 1/E there.

4.2. The characteristic scale of D-particle dynamics
In the case of high-energy string scattering, we could not probe the region

∆X < ∆T . To overcome this barrier, we need massive stable particles. The point-
like D-brane, i.e. a D-particle, of the type IIA superstring theory is an ideal agent in
this context, at least for a sufficiently weak string coupling, since its mass is propor-
tional to 1/gs and its stability is guaranteed by the BPS property. The derivation
of the characteristic scale of D-particle interactions has been given in two previ-
ous works. 38), 39) However, for the purpose of selfcontainedness and for comparison
with the result of the previous subsection, we repeat the argument here with some
clarifications.

Suppose that the region we are trying to probe by the scattering of two D-
particles is of order ∆X. Since the characteristic spatial extension of open strings
mediating the D-particles is then of order ∆X, we can use the space-time uncer-
tainty relation. The space-time uncertainty relation demands that the characteristic
velocity v of D-particles is constrained by

∆T∆X ∼ (∆X)2

v
>∼ "2

s,

since the period of time required for the experiment is of order ∆T ∼ ∆X/v. Note
that the last relation is due to the fact that ∆T is the time interval during which

1104 T. Yoneya

space-time uncertainty relation

black-hole uncertainty relation

critical point

ti
m

e
 u

n
c

e
rt

a
in

ty

space uncertainty

Fig. 1. This diagram schematically shows the structure of the space-time uncertainty relation and
the black hole uncertainty relation. The critical point is where the two relations meet.

the physics in this region in string theory. The above relation between the space-
time uncertainty relation and the black hole uncertainty relation suggests that in
the strong string-coupling regime and in the region ∆T > ∆Tc(! "s), the black-hole
uncertainty relation essentially governs the physics at long distatances ∆X > RS ,
with RS being the Schwarzschild radius, since RS > "2

s/∆T with ∆T ∼ 1/E there.

4.2. The characteristic scale of D-particle dynamics
In the case of high-energy string scattering, we could not probe the region

∆X < ∆T . To overcome this barrier, we need massive stable particles. The point-
like D-brane, i.e. a D-particle, of the type IIA superstring theory is an ideal agent in
this context, at least for a sufficiently weak string coupling, since its mass is propor-
tional to 1/gs and its stability is guaranteed by the BPS property. The derivation
of the characteristic scale of D-particle interactions has been given in two previ-
ous works. 38), 39) However, for the purpose of selfcontainedness and for comparison
with the result of the previous subsection, we repeat the argument here with some
clarifications.

Suppose that the region we are trying to probe by the scattering of two D-
particles is of order ∆X. Since the characteristic spatial extension of open strings
mediating the D-particles is then of order ∆X, we can use the space-time uncer-
tainty relation. The space-time uncertainty relation demands that the characteristic
velocity v of D-particles is constrained by

∆T∆X ∼ (∆X)2

v
>∼ "2

s,

since the period of time required for the experiment is of order ∆T ∼ ∆X/v. Note
that the last relation is due to the fact that ∆T is the time interval during which

Space-Time Uncertainty Principle 1105

the length of the open string is of order ∆X. This gives the order of the magnitude
for the minimum possible distance probed by D-particle scattering with velocity v:

∆X >∼
√

v"s. (4.6)

Thus to probe spatial distances shorter than the time scale, i.e. ∆X # ∆T , we have
to use D-particles with small velocity v # 1. However, the spreading of the wave
packet increases with decreasing velocity as

∆Xw ∼ ∆T∆wv ∼ gs

v
"s, (4.7)

since the ordinary time-energy uncertainty relation asserts that the uncertainly of
the velocity is of order ∆wv ∼ gsv−1/2 for time interval of order ∆T ∼ v−1/2"s. To
probe a range of spatial distance ∆X, we must have ∆X >∼ ∆Xw. Combining these
two conditions, we see that the shortest spatial length is given by

∆X ∼ g1/3
s "s, (4.8)

and the associated time scale is

∆T ∼ g−1/3
s "s. (4.9)

Thus the minimal scales of D-particle-D-particle scattering coincide with the critical
scales for microscopic black holes derived above. In other words, the minimal scales
of D-particle scattering is just characterized by the condition that the fluctuation of
the metric induced by the D-particle scattering is automatically restricted so that
no microscopic black holes are formed during a scattering process. Indeed, we can
derive the same scales from the black-hole uncertainty relation (4.1) by using the
restriction δT/mδX ∼ δX for the spreading of the wave packet of a free particle
with mass m ∼ 1/gs"s which is localized within a spatial uncertainty of order δX,
conforming to the above agreement.

In view of this interpretation of the scale of D-particle dynamics, the agreement
between D-particle scales and those for microscopic black hole formation is consis-
tent with the seemingly surprising fact that the effective supersymmetric Yang-Mills
quantum mechanics, which is formulated on a flat Minkowski background and does
not, at least manifestly, have any degrees of freedom of the gravitational field, can
reproduce 40)∼ 42) the gravitational interaction of type IIA supergravity, or equiva-
lently, of the 11 dimensional supergravity with vanishingly small compactification
radius R11 = gs"s, in the weak string-coupling (perturbative) regime. Naively, we
expect that the supergravity approximation to string theory is only valid at scales
which are larger than the string scale "s. On the other hand, the Yang-Mills ap-
proximation, keeping only the lowest string modes, is in general regarded as being
reliable in the regime where the lengths of open strings connecting D-particles are
small compared with the string scale. However, the consideration given in the previ-
ous subsection indicates that truly stringy gravitational phenomena are characterized
by the critical scales ∆Ts ∼ g−1/3

s "s $ "s, ∆Xc ∼ g1/3
s "s # "s. Given the fact that

the Yang-Mills approximation to string theory is characterized precisely by the same

Space-Time Uncertainty Principle 1105

the length of the open string is of order ∆X. This gives the order of the magnitude
for the minimum possible distance probed by D-particle scattering with velocity v:

∆X >∼
√

v"s. (4.6)

Thus to probe spatial distances shorter than the time scale, i.e. ∆X # ∆T , we have
to use D-particles with small velocity v # 1. However, the spreading of the wave
packet increases with decreasing velocity as

∆Xw ∼ ∆T∆wv ∼ gs

v
"s, (4.7)

since the ordinary time-energy uncertainty relation asserts that the uncertainly of
the velocity is of order ∆wv ∼ gsv−1/2 for time interval of order ∆T ∼ v−1/2"s. To
probe a range of spatial distance ∆X, we must have ∆X >∼ ∆Xw. Combining these
two conditions, we see that the shortest spatial length is given by

∆X ∼ g1/3
s "s, (4.8)

and the associated time scale is

∆T ∼ g−1/3
s "s. (4.9)

Thus the minimal scales of D-particle-D-particle scattering coincide with the critical
scales for microscopic black holes derived above. In other words, the minimal scales
of D-particle scattering is just characterized by the condition that the fluctuation of
the metric induced by the D-particle scattering is automatically restricted so that
no microscopic black holes are formed during a scattering process. Indeed, we can
derive the same scales from the black-hole uncertainty relation (4.1) by using the
restriction δT/mδX ∼ δX for the spreading of the wave packet of a free particle
with mass m ∼ 1/gs"s which is localized within a spatial uncertainty of order δX,
conforming to the above agreement.

In view of this interpretation of the scale of D-particle dynamics, the agreement
between D-particle scales and those for microscopic black hole formation is consis-
tent with the seemingly surprising fact that the effective supersymmetric Yang-Mills
quantum mechanics, which is formulated on a flat Minkowski background and does
not, at least manifestly, have any degrees of freedom of the gravitational field, can
reproduce 40)∼ 42) the gravitational interaction of type IIA supergravity, or equiva-
lently, of the 11 dimensional supergravity with vanishingly small compactification
radius R11 = gs"s, in the weak string-coupling (perturbative) regime. Naively, we
expect that the supergravity approximation to string theory is only valid at scales
which are larger than the string scale "s. On the other hand, the Yang-Mills ap-
proximation, keeping only the lowest string modes, is in general regarded as being
reliable in the regime where the lengths of open strings connecting D-particles are
small compared with the string scale. However, the consideration given in the previ-
ous subsection indicates that truly stringy gravitational phenomena are characterized
by the critical scales ∆Ts ∼ g−1/3

s "s $ "s, ∆Xc ∼ g1/3
s "s # "s. Given the fact that

the Yang-Mills approximation to string theory is characterized precisely by the same

Space-Time Uncertainty Principle 1105

the length of the open string is of order ∆X. This gives the order of the magnitude
for the minimum possible distance probed by D-particle scattering with velocity v:

∆X >∼
√

v"s. (4.6)

Thus to probe spatial distances shorter than the time scale, i.e. ∆X # ∆T , we have
to use D-particles with small velocity v # 1. However, the spreading of the wave
packet increases with decreasing velocity as

∆Xw ∼ ∆T∆wv ∼ gs

v
"s, (4.7)

since the ordinary time-energy uncertainty relation asserts that the uncertainly of
the velocity is of order ∆wv ∼ gsv−1/2 for time interval of order ∆T ∼ v−1/2"s. To
probe a range of spatial distance ∆X, we must have ∆X >∼ ∆Xw. Combining these
two conditions, we see that the shortest spatial length is given by

∆X ∼ g1/3
s "s, (4.8)

and the associated time scale is

∆T ∼ g−1/3
s "s. (4.9)

Thus the minimal scales of D-particle-D-particle scattering coincide with the critical
scales for microscopic black holes derived above. In other words, the minimal scales
of D-particle scattering is just characterized by the condition that the fluctuation of
the metric induced by the D-particle scattering is automatically restricted so that
no microscopic black holes are formed during a scattering process. Indeed, we can
derive the same scales from the black-hole uncertainty relation (4.1) by using the
restriction δT/mδX ∼ δX for the spreading of the wave packet of a free particle
with mass m ∼ 1/gs"s which is localized within a spatial uncertainty of order δX,
conforming to the above agreement.

In view of this interpretation of the scale of D-particle dynamics, the agreement
between D-particle scales and those for microscopic black hole formation is consis-
tent with the seemingly surprising fact that the effective supersymmetric Yang-Mills
quantum mechanics, which is formulated on a flat Minkowski background and does
not, at least manifestly, have any degrees of freedom of the gravitational field, can
reproduce 40)∼ 42) the gravitational interaction of type IIA supergravity, or equiva-
lently, of the 11 dimensional supergravity with vanishingly small compactification
radius R11 = gs"s, in the weak string-coupling (perturbative) regime. Naively, we
expect that the supergravity approximation to string theory is only valid at scales
which are larger than the string scale "s. On the other hand, the Yang-Mills ap-
proximation, keeping only the lowest string modes, is in general regarded as being
reliable in the regime where the lengths of open strings connecting D-particles are
small compared with the string scale. However, the consideration given in the previ-
ous subsection indicates that truly stringy gravitational phenomena are characterized
by the critical scales ∆Ts ∼ g−1/3

s "s $ "s, ∆Xc ∼ g1/3
s "s # "s. Given the fact that

the Yang-Mills approximation to string theory is characterized precisely by the same

Space-Time Uncertainty Principle 1105

the length of the open string is of order ∆X. This gives the order of the magnitude
for the minimum possible distance probed by D-particle scattering with velocity v:

∆X >∼
√

v"s. (4.6)

Thus to probe spatial distances shorter than the time scale, i.e. ∆X # ∆T , we have
to use D-particles with small velocity v # 1. However, the spreading of the wave
packet increases with decreasing velocity as

∆Xw ∼ ∆T∆wv ∼ gs

v
"s, (4.7)

since the ordinary time-energy uncertainty relation asserts that the uncertainly of
the velocity is of order ∆wv ∼ gsv−1/2 for time interval of order ∆T ∼ v−1/2"s. To
probe a range of spatial distance ∆X, we must have ∆X >∼ ∆Xw. Combining these
two conditions, we see that the shortest spatial length is given by

∆X ∼ g1/3
s "s, (4.8)

and the associated time scale is

∆T ∼ g−1/3
s "s. (4.9)

Thus the minimal scales of D-particle-D-particle scattering coincide with the critical
scales for microscopic black holes derived above. In other words, the minimal scales
of D-particle scattering is just characterized by the condition that the fluctuation of
the metric induced by the D-particle scattering is automatically restricted so that
no microscopic black holes are formed during a scattering process. Indeed, we can
derive the same scales from the black-hole uncertainty relation (4.1) by using the
restriction δT/mδX ∼ δX for the spreading of the wave packet of a free particle
with mass m ∼ 1/gs"s which is localized within a spatial uncertainty of order δX,
conforming to the above agreement.

In view of this interpretation of the scale of D-particle dynamics, the agreement
between D-particle scales and those for microscopic black hole formation is consis-
tent with the seemingly surprising fact that the effective supersymmetric Yang-Mills
quantum mechanics, which is formulated on a flat Minkowski background and does
not, at least manifestly, have any degrees of freedom of the gravitational field, can
reproduce 40)∼ 42) the gravitational interaction of type IIA supergravity, or equiva-
lently, of the 11 dimensional supergravity with vanishingly small compactification
radius R11 = gs"s, in the weak string-coupling (perturbative) regime. Naively, we
expect that the supergravity approximation to string theory is only valid at scales
which are larger than the string scale "s. On the other hand, the Yang-Mills ap-
proximation, keeping only the lowest string modes, is in general regarded as being
reliable in the regime where the lengths of open strings connecting D-particles are
small compared with the string scale. However, the consideration given in the previ-
ous subsection indicates that truly stringy gravitational phenomena are characterized
by the critical scales ∆Ts ∼ g−1/3

s "s $ "s, ∆Xc ∼ g1/3
s "s # "s. Given the fact that

the Yang-Mills approximation to string theory is characterized precisely by the same

Space-Time Uncertainty Principle 1105

the length of the open string is of order ∆X. This gives the order of the magnitude
for the minimum possible distance probed by D-particle scattering with velocity v:

∆X >∼
√

v"s. (4.6)

Thus to probe spatial distances shorter than the time scale, i.e. ∆X # ∆T , we have
to use D-particles with small velocity v # 1. However, the spreading of the wave
packet increases with decreasing velocity as

∆Xw ∼ ∆T∆wv ∼ gs

v
"s, (4.7)

since the ordinary time-energy uncertainty relation asserts that the uncertainly of
the velocity is of order ∆wv ∼ gsv−1/2 for time interval of order ∆T ∼ v−1/2"s. To
probe a range of spatial distance ∆X, we must have ∆X >∼ ∆Xw. Combining these
two conditions, we see that the shortest spatial length is given by

∆X ∼ g1/3
s "s, (4.8)

and the associated time scale is

∆T ∼ g−1/3
s "s. (4.9)

Thus the minimal scales of D-particle-D-particle scattering coincide with the critical
scales for microscopic black holes derived above. In other words, the minimal scales
of D-particle scattering is just characterized by the condition that the fluctuation of
the metric induced by the D-particle scattering is automatically restricted so that
no microscopic black holes are formed during a scattering process. Indeed, we can
derive the same scales from the black-hole uncertainty relation (4.1) by using the
restriction δT/mδX ∼ δX for the spreading of the wave packet of a free particle
with mass m ∼ 1/gs"s which is localized within a spatial uncertainty of order δX,
conforming to the above agreement.

In view of this interpretation of the scale of D-particle dynamics, the agreement
between D-particle scales and those for microscopic black hole formation is consis-
tent with the seemingly surprising fact that the effective supersymmetric Yang-Mills
quantum mechanics, which is formulated on a flat Minkowski background and does
not, at least manifestly, have any degrees of freedom of the gravitational field, can
reproduce 40)∼ 42) the gravitational interaction of type IIA supergravity, or equiva-
lently, of the 11 dimensional supergravity with vanishingly small compactification
radius R11 = gs"s, in the weak string-coupling (perturbative) regime. Naively, we
expect that the supergravity approximation to string theory is only valid at scales
which are larger than the string scale "s. On the other hand, the Yang-Mills ap-
proximation, keeping only the lowest string modes, is in general regarded as being
reliable in the regime where the lengths of open strings connecting D-particles are
small compared with the string scale. However, the consideration given in the previ-
ous subsection indicates that truly stringy gravitational phenomena are characterized
by the critical scales ∆Ts ∼ g−1/3

s "s $ "s, ∆Xc ∼ g1/3
s "s # "s. Given the fact that

the Yang-Mills approximation to string theory is characterized precisely by the same

Heisenberg
relation

252010年3月20日土曜日



弦の作用（Schild gauge)の (generalized) symplectic structure か
らの解釈
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the world-sheet (proper) time, leading to second class constraints, and there is no ki-
netic term and no Hamiltonian. From the viewpoint of noncommutative space-time
coordinates, on the other hand, the second class constraints making identifications
between some components of momenta and coordinates, could be the origin of the
noncommutativity. If we assume for the moment that the external b field is inde-
pendent of the world-sheet time, the Dirac bracket taking account the second class
constraint is

{Xµ(σ1), Xν(σ2)}D = λ2((∂σb(σ1)−1)µνδ(σ1 − σ2).

To see that this conforms to the space-time uncertainty relation, it is more appro-
priate to rewrite it as

{
Xµ(σ1),

1
λ

∂σbµ
ν (σ2)Xν(σ2)

}

D
= λδ(σ1 − σ2). (5.6)

Since the b field satisfies the constraint equation

1
2λ2

b2
µν = −1, (5.7)

assuming that the auxiliary field e is first integrated over, we must have nonvanishing
time-like components b0i of order λ:

b2
0i = λ2 +

1
2
b2
ij ≥ λ2.

Then (5.6) is characteristic of the noncommutativity between the target time and
the space-like extension of strings.

In the general case of a time dependent auxiliary field b, it is not straightforward
to interpret the above action within the ordinary framework of canonical quantiza-
tion, since the system is no longer a conserved system, with explicit time dependence
in the action. However, the essence of the noncommutativity lies in the presence of
the phase factor itself,

exp
[
i
∫

d2ξ
1

2λ2
εab∂aX

µ∂bX
νbµν

]
,

rather than a formal interpretation in terms of operator algebra. The path inte-
gral in principle contains all the information of both the operator algebra and its
representation. Let us assume the appearance of this phase factor is an indispens-
able part of any quantization based on the action (5.5). Then, we can qualitatively
see a characteristic noncommutativity between time and space directions directly in
this phase factor for the general case. To avoid a complication associated with the
boundary we restrict ourselves to closed strings in the following discussion.

First, in the presence of this phase factor, the most dominant configurations
for the b field for a generic world-sheet configuration of the string coordinates are
those with the smallest possible absolute values allowed under the constraint (5.7).
This is because the cancellation of the path integral over the world-sheet coordinate
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Let us consider the so-called Schild action∗) of the form (λ = 4πα′, ξ = (τ,σ))

Sschild = −1
2

∫
d2ξ e

{ 1
e2

[
− 1

2λ2
(εab∂aX

µ∂bX
ν)2

]
+ 1

}
+ · · · (5.1)

where e is an auxiliary field necessary to maintain the reparametrization invariance.
We only consider the bosonic part for simplicity. The relevance of this action to
the space-time uncertainty relation has been discussed in a previous work 25) from
a slightly different context. There, it is shown how to transform the action into
the more familiar Polyakov formulation. Also the study of this action motivates
the definition of a particular matrix model, called ‘microcanonical matrix model’, as
a tentative nonperturbative formulation, by introducing a matrix representation of
the commutation constraint (2.5). This model is quite akin to the type IIB matrix
model. 17)

From the point of view of conformal invariance, the equivalence of this action
with that of the ordinary formulation is exhibited by the presence of the same Vira-
soro condition as the usual one. We can easily derive it in the form of constraints in
the Hamiltonian formalism:

P2 +
1

4πα′ X́
2 = 0, P · X́ = 0. (5.2)

In deriving this relation, it is essential to use the condition coming from the variation
of the auxiliary field e,

1
e

√
−1

2
(εab∂aXµ∂bXν)2 = λ (5.3)

which we proposed to refer to as a ‘conformal constraint’ in Ref. 25). Under these
circumstances, we can proceed to the ordinary quantization with the Virasoro con-
straint as a first class constraint. In this case, there is apparently no place where the
noncommutativity of space-time coordinates appears. The space-time uncertainty
relation is embodied in conformal invariance which is typically represented by the
Virasoro condition.

Now let us change to another possible representation of the Schild action by
introducing a new auxiliary field bµν(ξ), which is a space-time antisymmetric tensor
of second rank but is also a world-sheet density:

Sb = −1
2

∫
d2ξ e

{ 1
e2

[ 1
λ2

(
εab∂aX

µ∂bX
νbµν +

1
2
b2
µν

)]
+ 1

}
. (5.4)

This can further be rewritten by making the rescaling bµν → ebµν of the b field:

Sb2 = −
∫

d2ξ
{ 1

2λ2
εab∂aX

µ∂bX
νbµν +

1
2
e
( 1

2λ2
b2
µν + 1

)}
. (5.5)

Note that the b field is then a world-sheet scalar. Usually, this Lagrangian is not
convenient for quantization, since it contains only first derivatives with respect to

∗) The original action proposed in Ref. 60) did not contain the auxiliary field e. However, an
equivalent condition was imposed by hand.

lagrange multiplier





1
X1×1

X2×2

X3×3

·
·
·

XN×N

·
·





φ+ φ−

φ+Fφ−

∆T ∼ scale along the longitudinal directions

∆X ∼ scale along the transverse directions

√
λ(Γ∗)#s

v − v

r

∼ g−(3−p)
s #s ∼ g3−p

s #s

|δx| ! !
|δp| +

#2
s|δp|
! ≥ #s

λ = #2
s
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Spartilce =

∫
dξ

(
pµ

dxµ

dξ
+ e(p2 + m2)

)
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相対論的粒子の作用原理の自然な拡張

古典的には、Nambu-Goto, 
Polyakov 作用と同等
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 M理論スケールとの関係

エネルギ－の揺らぎ　　　　　　　　による、ミクロな重力スケール（mini black hole の大きさ）

cross over point 

1102 T. Yoneya

which in ten-dimensional string theory is equal to !P ∼ g1/4
s !s, corresponding to the

ten-dimensional Newton constant G10 ∼ g2
s!

8
s. Indeed, if we neglect the effect of

higher massive modes of string theory, this would be the only relevant scale. Let us
consider the limitation of the notion of classical space-time from this viewpoint in
light of the possible formation of black holes in the short distance regime. Suppose
that we probe the space-time structure at a small resolution of order δT along the
time direction. This necessarily induces an uncertainty δE ∼ 1/δT of energy. Let
us require ordinary flat space-time structure to be qualitatively preserved at the
microscopic level by demanding that no virtual horizon is encountered, associated
with this uncertainty of energy. Then we have to impose the condition that the
minimum resolution along spatial directions must be larger than the Schwarzschild
radius corresponding to this energy:

δX >∼ (G10/δT )1/7.

This leads to the ‘black-hole uncertainty relation’ ∗)

δT (δX)7 >∼ G10. (4.1)

This expresses a limitation, for observers at asymptotic infinity, with respect to
spatial and temporal resolutions, below which the naive classical space-time picture
without the formation of microscopic black holes can no longer be applied. If we
assume that the spatial and temporal scales are of the same order, this would lead to
the familiar looking relation δT ∼ δX >∼ !P . However, in the presence of some stable
very massive particle state in probing the short distance scales, such as a D-particle,
this assumption may not necessarily be valid, and we should in general treat the two
scales independently.

Furthermore, it is important to remember that the relation (4.1) does not forbid
smaller spatial scales than δX in principle. Suppose we use as a probe a sufficiently
heavy particle, such as a D-particle in the weak string-coupling regime. We can
then neglect the extendedness of the wave function and localize the particle in an
arbitrarily small region. In this limit, classical general relativity can be a good
approximation. But general relativity only requires the existence of local time, and
hence we cannot forbid the formation of black holes. This only stipulates that
we cannot read the clock on the particle inside the black hole from an asymptotic
region at infinity. If we suppose a local observer (namely just another particle) sitting
somewhere apart in a local frame which falls into the black hole, it is still meaningful
to consider the local space-time structure at scales which exceed the condition (4.1),
since the extendedness of the wave packet of a sufficiently heavy particle can, in
principle, be less than the limitation set by (4.1). In connection with this, it should

∗) Similar relations have been considered by other authors, independently of string theory. How-
ever our interpretation is somewhat different from those of other works. (See for a recent example
Ref. 36).) We also note that the power 1/7 (= 1/(D − 3)) on the right hand side depends on the
space-time dimensions. In particular, for D = 4 the left-hand side of the black hole uncertainty
relation takes the same form as the stringy one (2.2). In connection with this, see an interesting
paper. 37) The author would like to thank M. Li for bringing this last reference to his attention.
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be kept in mind that the above condition only corresponds to the restriction on the
formation of microscopic black holes. For example, for a light probe, instead of a very
heavy one, we have to take into account the usual quantum mechanical spread of the
wave function, as we will do below in deriving the characteristic scale of D-particle
scattering.

Despite a similarity in its appearance to (4.1), the space-time uncertainty rela-
tion of full string theory places a limitation in principle on the scale beyond which
we can never probe the space-time structure by any experiment allowed in string
theory,

∆T∆X >∼ "2
s. (4.2)

Note that such a strong statement is acceptable in string theory, because it is a well-
defined theory resolving the ultraviolet problems. The nature of the condition (4.1)
is therefore quite different from (4.2). In this situation, the most important scale
corresponding to truly stringy phenomena is where these two limitations of different
kinds meet. Namely, beyond this crossover point, it becomes completely meaningless
to talk about the classical geometry of a black hole, and hence it is where the true
limitation on the validity of classical general relativity must be set. The critical
scales ∆Tc and ∆Xc corresponding to the crossover are obtained by substituting the
relation ∆Tc ∼ "2

s/∆Xc into (4.1):

(∆Xc)6 ∼ G10

"2
s

= g2
s"

6
s. (4.3)

This gives
∆Xc ∼ g1/3

s "s, ∆Tc ∼ g−1/3
s "s. (4.4)

Interestingly enough, we have derived the well-known eleven dimensional M-theory
scale

"M = g1/3
s "s = ∆Xc (4.5)

as the critical spatial scale, without invoking D-branes and string dualities directly.
Note that this critical scale crucially depends on 10 dimensional space-time. For
example, in 4 space-time dimensions, there is no such critical scale for arbitrary
values of string coupling: Namely, there is only a ‘critical coupling’ gs ∼ 1 at which
the Planck scale and string scale coincide.

To appreciate the meaning of the critical scales, it is useful to look at the di-
agram in Fig. 1. We see clearly that for ∆t < ∆Tc there is no region where the
concept of the microscopic black hole associated with quantum fluctuations is mean-
ingful. On the other hand, in the region ∆t > ∆Tc, there is a small region where
(∆t)−1"2

s < ∆X < ∆Xc is satisfied, and hence black hole formation at the mi-
croscopic level may be meaningful in string theory. The importance of this region
increases as the string coupling grows larger. In the limit of weak string coupling,
where ∆Tc → ∞ and ∆Xc → 0, there is essentially no fluctuation of the space-time
metric corresponding to the formation of microscopic black holes. Unfortunately,
the space-time uncertainty relation alone cannot predict more detailed properties
of stringy black holes at microscopic scales. It is an important problem to explore
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Fig. 1. This diagram schematically shows the structure of the space-time uncertainty relation and
the black hole uncertainty relation. The critical point is where the two relations meet.

the physics in this region in string theory. The above relation between the space-
time uncertainty relation and the black hole uncertainty relation suggests that in
the strong string-coupling regime and in the region ∆T > ∆Tc(! "s), the black-hole
uncertainty relation essentially governs the physics at long distatances ∆X > RS ,
with RS being the Schwarzschild radius, since RS > "2

s/∆T with ∆T ∼ 1/E there.

4.2. The characteristic scale of D-particle dynamics
In the case of high-energy string scattering, we could not probe the region

∆X < ∆T . To overcome this barrier, we need massive stable particles. The point-
like D-brane, i.e. a D-particle, of the type IIA superstring theory is an ideal agent in
this context, at least for a sufficiently weak string coupling, since its mass is propor-
tional to 1/gs and its stability is guaranteed by the BPS property. The derivation
of the characteristic scale of D-particle interactions has been given in two previ-
ous works. 38), 39) However, for the purpose of selfcontainedness and for comparison
with the result of the previous subsection, we repeat the argument here with some
clarifications.

Suppose that the region we are trying to probe by the scattering of two D-
particles is of order ∆X. Since the characteristic spatial extension of open strings
mediating the D-particles is then of order ∆X, we can use the space-time uncer-
tainty relation. The space-time uncertainty relation demands that the characteristic
velocity v of D-particles is constrained by

∆T∆X ∼ (∆X)2

v
>∼ "2

s,

since the period of time required for the experiment is of order ∆T ∼ ∆X/v. Note
that the last relation is due to the fact that ∆T is the time interval during which

弦理論における、
最も典型的な、
量子重力スケール

stringy uncertainty relation
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M理論で予想される、
11D Planck scale と一致
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課題

　・ world-sheet 描像によらない非摂動的定式化
　　　　 BFSS, IKKT 行列模型などと consistent

　・ 「不確定性」の正確な定義
       　　通常の energy-time uncertainty relation と似たような意味で曖昧さがある

　・ Holographic principle との関係
　　　　UV-IR 対応の自然な説明を与え、open-closed string duality の定性的性質を捉えている
　　　　　 いるという意味で、Holography の実現をミクロレベルで支えている
　　　

　
　・ 検出可能性（たとえば、初期宇宙の揺らぎ）
　　　　　“non-commutative” inflation の模型で議論されている
　　　　　e. g.,  R. H. Brandenberger and P. M. Ho, Phys. Rev. D66(2002)023517 

　　　　　and many others

以上全体に関する包括的な議論について、
T. Y., “String theory and the space-time uncertainty principle”,
    Prog. Theor. Phys. 103, 1081 (2000) hep-th/0004074
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Dブレーン力学が示唆する統一と新たな量子的構造

Dブレーンとは何か

open string の端点の自由度
単なる境界条件ではなく力学的自由度

bulkゲージ場（RR 場）の源で安定　　　　　　　　　　
（ゲージ電磁荷を持たない不安定ブレーンも考えることができる)

一般に広がりを持つ：　　　　　　　　　　　　　　　　　　　

空間的広がりの次元が p のとき　Dp ブレーンと呼ぶ．　安定ブレーン

の可能な次元は摂動的真空による．

低速度(非相対論)・低励起エネルギー近似で
は、supersymmetric Yang-Mills theory により
記述できる

D-branes

strings

a b

diagonal

off-diagonal

bulk supergravity 近似 (low-energy effective theory) で
は、古典解（ブラックホール解）として記述できる
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運動と相互作用は open string の量子的揺らぎにより支配される．言い換える
と，open string fieldは，Dブレーンの collective coordinate とみなせる．

　velocity expansion は、ゲージ理論の摂動論 (vacuum diagrams, 一種の entropy effect)  

  で扱える。それにより、D０粒子の一般相対論的３体力と運動方程式が正しく導ける
　　　　　　　　　　　　　　Y. Okawa-T. Y.,  NPB538, 67(1999) hep-th/9806108, 

                                                     　　　　　　　　　　　　NPB541, 163(1999) hep-th/9808188

                                                        

!P =
√

h = f(Φ)!s

f(Φ) = exp (2φ/(D − 2))

gs = eφ

α′ = !2
s

pc = 4 g = 0 g = 1 g = 2 2g

Ω = Ω1 + Ω2, Ω1 ∩ Ω2 = ∅

∆E∆t ! h

∆E ∼ ∆X
h

!2
s

∆t = ∆T

mass desnsity ∼ 1

gs!s
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Ω = Ω1 + Ω2, Ω1 ∩ Ω2 = ∅

∆E∆t ! h

∆E ∼ ∆X
h

!2
s

∆t = ∆T

mass desnsity ∼ 1

gs!s

accelation ∝ g2
s ×

1

gs!s
=

gs

!s
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creation and annihilation 
of open strings

exchange of closed strings
(includes graviton exchange)

スムーズにつながる

effective theory=gauge theory effective theory=gravity

open-closed string  duality in string perturbation theory (simplest one-loop case)
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もし、この性質が任意のオーダーまで成り立ち、

さらに non-perturbative  にも有効なら

両者がまったく同等の既述を与える領域の存在も予想される

しかし、 bulk theory の立場だけから　Dブレーンの

正確な量子論的力学を展開するのは、極めて困難
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もし、この性質が任意のオーダーまで成り立ち、

さらに non-perturbative  にも有効なら

両者がまったく同等の既述を与える領域の存在も予想される

しかし、 bulk theory の立場だけから　Dブレーンの

正確な量子論的力学を展開するのは、極めて困難

gauge/gravity (string) 対応は、Dブレーンの力学の定式化の観点
から、(局所)場の理論と弦理論との関係に新たな認識をもたらし、方法論的
にも新たな普遍性を強く示唆しているが、その有効性の範囲については、解
明されるべき謎が多く残っている
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gauge/gravity (or string) 対応の課題
どういう場合に、どこまで有効か、両者を関係づける内在的論理はあるのか、

・大域的対称性(supersymmetry, conformal symmetry, ...)の役割:

　       perturbative な open-closed string duality は、bosonic string でも成立

・局所的対称性の役割:

　      bulk: general coordinate invariance　　　　boundary: local gauge symmetry

・大N極限の役割:

　     もし、1/N 展開の高次まで成り立つなら、有限の N でも有効か

・「境界側理論=局所場理論」は、どこまで成り立つのか:

　   ゲージ理論は、弦理論の立場では、lowest mode だけを残した近似にすぎない

・弦理論に埋め込めないような理論で、どこまで正当化されるか:
　
　　3D O(N) vector model の場合 : Vasiliev’s higher spin gauge theory (AdS_4)
　　　　　　　　　　　　　　　(tensionless limit of some string theory?)

・ゲージ理論に本質的なスケール依存 (running coupling constant) のダイナミクス 

  を捉えられるか:

    　QCD の場合、 asymptotic freedom と confinement を同時に記述できるか
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コメント
conformal 変換に関して：

　　boundary 側のゲージ変換とbulk側の座標変換が関係し得ること (D3 case)

5.1.2 Connection between bulk-boundary conformal transformation

The appearance of the (super) conformal symmetry as the isometry of the D3-brane

background is very natural, since the corresponding N = 4 super Yang-Mills theory

in 4 base spacetime dimensions is known to have the same conformal symmetry even

after quantization : The beta function exactly vanishes. This is due to the presence of

the maximal supersymmetry. If the supersymmetry is broken down, the beta function

would no longer vanish. For instance, N=2 theory beta function is known to subject to

nonvanishing one-loop correction.

However, there is a small mismatch here. From the viewpoint of D3-brane Yang-Mills

theory, the transformation law for the base space coordinates for D3-brane is

δKxa = −2ε · xxa + εax2 (5.163)

since the transformation law of the Yang-Mills theory is

δKAa(x) = (δKxb)∂bAa(x) − 2ε · xAa(x) + 2xaε · A(x) − 2εax · A(x), (5.164)

δKXµ(x) = (δKxb)∂bX
µ(x) − 2ε · xXµ(x). (5.165)

However, the transformation law of the base space coordinates has the inhomogeneous

terms εa qN
r2 . How does these two transformations can be connected? A possible answer

would be that the Yang-Mills theory lives at the boundary corresponding to the limit

r → ∞. However this is rather strange, since the Yang-Mills theory is supposed to

describe the D3-branes themselves which produce this backgrounds The correct answer is

suggested by the following simple computation.

Suppose we probe the dynamics of D3-brane by putting another D3-brane as a ‘test’

brane in the background produced by a large number of source D3-branes. The coordinates

of D3-branes are described by the diagonal matrix elements of the Higgs fields. If the

distance between the source and the probe is first assumed to be large, the energy-scale

of the off-diagonal part is large or the length scale in the world volume is small, and it

is appropriate to integrate over the off-diagonal part, keeping fixed the low-energy (or

large-distance) dynamics of the diagonal part. In order to carry this out, we have to fix

the gauge for the off-diagonal part. The most convenient is the usual background-field

gauge, assuming the diagonal part B of the fields as the background fields. Namely, the

gauge function is

F = ∂aA
a − i

1

(2πα′)2
[Bµ, Y

µ],

77

Kazama-Jevicki-T.Y. PRL81,5072,1998
“Quantum Metamorphosis”

non-conformal な場合：

・D0-case (0+1次元super Yang-Mills theory): bulk 側からの2点関数の予言
　　　　　　　　　　 Sekino-T.Y.  NPB570, 174, 1998

　ゲージ理論側で、Monte Carlo simulation によるチェックができつつある
                               Hanada-Nishimura-Sekino-T.Y., arXiv:0911.1623, and in preparation

・ “generalized conformal symmetry” が、かなり有効
　　　　　　　　　　Jevicki-T.Y., NPB535,335,1998 
                                        Jevicki-Kazama-T.Y., PRD59,066001,1999
                                         Knitscheider-Skenderis-Taylor, JHEP 0809:094,2008
                                                      Azeyanagi-Hanada-Kawai-Matsuo, NPB816,278,2009
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最近試みられている様々な「現象論的応用」を正当化し基礎づけ、
また、それにより、本当の意味で新しい知見を得るためには、

これらの点について理解を深めることが不可欠

可能性を広げることも大事だが、
根拠が薄弱なまま拡大を続けるだけでは、新しい物理を見いだすのは困難
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最近試みられている様々な「現象論的応用」を正当化し基礎づけ、
また、それにより、本当の意味で新しい知見を得るためには、

これらの点について理解を深めることが不可欠

可能性を広げることも大事だが、
根拠が薄弱なまま拡大を続けるだけでは、新しい物理を見いだすのは困難

1970年代の疑問
ー 弦理論についての二つの見方(or 役割)とその相互関係 ー

は、まだ解明されたとは言えない。

352010年3月20日土曜日



gauge/gravity(string) 対応の深化に向けて

open-closed string duality の world-sheet 描像によらない (非摂動的) 定式化

M理論：M-theory conjecture によれば、11次元時空が弦理論の非摂動的背景にある

一つの未完成な試み：D粒子(D0-brane)の「場の理論」

２つの動機：

一般の11D graviton = coherent bound state of  (infinitely) many D0-branes

・D0-brane の個数を力学変数として扱えるような、新しい枠組みが必要
・行列模型(BFSS)は、特別なlight-cone frame における「配位空間」量子力学

・D0 field (or M field) theory への第１歩は、
   Yang-Mills matrix quantum mechanics の「第２量子化」

∼ g−1/(3−p)
s !s ∼ g1/(3−p)

s !s

p "= 3 p = 3

|δx| ! !
|δp| +

!2
s|δp|
! ≥ !s

λ = !2
s

Spartilce =

∫
dξ

(
pµ

dxµ

dξ
+ e(p2 + m2)

)

"= 0

+ ζ

ηi → ηi + 〈ζ i〉

det〈vi, vj〉

φ3

S =
1

6
〈ψ3〉 → SWitten = 〈1

2
ψ̃ψcψ̃ +

1

6
ψ̃3〉

ψ2
c = 0, ψ = ψc + ψ̃

P10 = N/R N → ∞ as R = gs!s → ∞
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4

Project of D-brane field theories

open-string field theories

 effective Yang-Mills theories

D-brane field theories

closed-string field theories

open-closed duality

 first quantization

         or

second quantization

       bosonization

                   or

    Mandelstam duality

An analogy on the right-hand side: soliton operator ↔ Dirac field
in the duality between sine-Gordon model and massive Thirring model

exp(π(x) ± iφ(x)) ↔ ψ(x), εµν∂νφ ↔ ψγµψ(x) etc

Open closed string duality の非摂動的定式化に向けた予想

 an analogy : Mandelstam duality in 2D field theories 

massive Thirring model

sine-Gordon model

D-particle field theory

closed string field 

Sextre
bek = 2π

√
Q1Q5Np

P =
Np

R

d(N,Q1, Q5) ∼ exp 2π
√

cN/6 ∼ exp 2π
√

Q1Q3NP c = 4Q1Q5×3/2 N = NP
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YMQ $ 1, Q # 1

Rcurvature # "s

Seff =
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2
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sv

4

r7
+ b2
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13
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r14
+ · · · )

v2
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p = q p < q p > q

δsusyX
i
ab ∼ εγiΨab , δsusyΨab ∼ εẊab + · · ·

∆Th → 0 ⇒ ∆Xh → ∞
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D brane ゲージ理論の 
Fock space


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ゲージ理論の通常の物理量（ゲージ不変量は、
Dブレーン場の bilinear 形式を用いて表せる。

T.Y.,  arXiv:0705.1960[hep-th] (PTP118, 135 (2007)
T.Y.,  arXiv:0804:0297[hep-th] (IJMPA23, 2343(2008)

問題： 完全に non-associative な代数構造が必要になる
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おわりに 残念ながら、2000年以降、「弦理論とは何か」に
関して本質的な進展はない

今一度、原点に立ち返ることが重要ではないだろうか
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おわりに

最大の課題

非摂動的・背景独立な定式化のための
原理 (と自由度) を探ること

そのような定式化ができれば、

相対論的量子論の基礎およびその解釈についても大きな

影響を及ぼすだろう

アインシュタインの夢＝量子と幾何学の統一

の実現！

いずれにしても、最終的な定式化には何らかの概念的飛躍が必要だろう

残念ながら、2000年以降、「弦理論とは何か」に
関して本質的な進展はない

今一度、原点に立ち返ることが重要ではないだろうか
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アインシュタインとディラックの遺産
　　　　　　　　　　　　　
　

The real goal of my research has always been the simplification 
and unification of the system of theoretical physics. I attained this 
goal satisfactorily for macroscopic phenomena, but not for the 
phenomena of quanta and atomic structure. ...

A. Einstein (1879-1955), 1939

The lines would then be the elementary concept in terms 
of which the whole theory of electrons and the 
electromagnetic field would have to be built up. Closed 
lines would be interpreted as photons and open lines 
would have their ends interpreted as electrons or 
positrons. ...

P. A. M. Dirac (1902-1984), 1955
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