場の量子論の基礎

風間洋一 (東京大学大学院総合文化研究科)

1 場の量子論(Quantum Field Theory)とは何か

古典場のプロトタイプ = 相対論に従う Maxwellの電磁場

- ●この量子論的取り扱い ⇒ 場の量子論の始まり。
- 電子との相互作用の考察 ⇒ Dirac場 ⇒ Quantum Electro-Dynamics (QED)
 場の量子論のプロトタイプ

しかし、これは場の量子論の本質を反映していない

場の量子論とは

Key words

□ 無限自由度:

- 「本来の」対象 = 物性理論で扱うような凝縮系。
 少数有限系では現れない現象の記述
 例: 媒質中の波動、相転移、対称性の自発的破れ
- 多体性が見かけ上隠されている場合あり: 少数の素励起の物理
- 無限自由度ゆえの"困難"
- ◆ 短距離発散 = UV divergence

不確定性原理 ⇒ 無限個の自由度が短距離で励起されうる。

- ♦ 長距離発散 = IR divergence
 - ⇐ 無限個の massless 低エネルギー量子の励起 (例: photons)

しかし、

これらの発散にはQFTの構造に関する重要な情報が反映されている。

□ 長距離=低エネルギー有効理論:

a = 3体系のミクロな基本長さ (例:格子間隔) $\Lambda = 1/a =$ 可能なエネルギー、運動量の上限 = UV cut-off 長波長 $\lambda (\gg a)$ でプローブ \Rightarrow ミクロな詳細は平均化

⇒ 連続的な場

⇔ QFTの背後にはしばしばQFT自体とは非常に異なるミクロな構造が 存在

例:

- Spin system on a lattice (microscopic scale = lattice spacing)
- Superstring theory (microscopic scale = Planck scale $(10^{-34} \text{ cm}))$

□ 論理的整合性:

上記の見方はQFTの近似理論としての見方を強調。

QFTの驚くべき性質: 同時に、それが非常に高い論理的整合性を持つ。 ~ 熱力学

⇒ QFTは自然界の基本的な理論を記述する機能も持つ。

典型例:素粒子の標準理論

• Quantum Chromo Dynamics

◆ 電弱統一理論 (Glashow-Weinberg-Salam theory)

□ QFTのこれらの特徴の根源:

QFT が広汎な応用を持つ ← 一見矛盾する二つの特徴を併せ持つ

♦ 低エネルギー有効理論:

系をプローブするエネルギースケールにより有効な自由度、重要にな る相互作用 が異なりうる。

scale-dependent ⇔ 繰り込み(factorization)、繰り込み群

K.G. Wilson他

具体例: 間隔 $a(\sim 1/\Lambda)$ で並べら れたスピン系の作る強磁性体のHeisenberg モデル

$$H_\Lambda = -J\sum_{< i,j>}ec{S_i}\cdotec{S_j}$$

長さのスケールL (mass scale $\sim \mu = 1/L$) より短距離で起こる揺らぎ を平均化。(経路積分ではそれらの自由度を積分。)

⇒ サイズ ~ Lの間隔で並ぶ有効スピンの理論。 もとのシステムと比較するために、これをL/aの因子で re-scale。 = 繰り込み変換

 \Rightarrow Scale μ での有効理論: スピン間の新しい有効相互作用を含む

$$egin{aligned} H_{\mu} &= \sum_{n} \underbrace{g_{n}(\mu)}_{UV} \underbrace{\mathcal{O}_{n}(\mu)}_{IR}, & ext{factorized form} \ \mathcal{O}_{n}(\mu) &\sim ec{S}_{i} \cdot ec{S}_{j}\,, (ec{S}_{i} \cdot ec{S}_{j})^{2}\,, etc. \end{aligned}$$

 $\mathcal{O}_n(\mu) = 有効スピンから組み立てられた local operators<math>g_n(\mu) = 有効結合定数. L$ より小さなスケールでの物理の情報を集約。

♦ 高度な論理的整合性:

少数の基本的パラメーターによる 自然界の基本法則の記述

(「近似」理論ではこれは期待されない。)

例: QCDが低エネルギー有効理論であるという兆候はQCDの中では 見えない。

"scale-independent" ⇔ 繰り込み可能理論、Universality

繰り込み可能理論(の定義):

繰り込み変換の操作を繰り返す: $\mu
ightarrow ext{small}$

有限個の $g_n(\mu)$ のみが有限にとどまり、残りの結合定数がゼロに近づく 場合がある。

⇒ 長距離のダイナミックスは少数の $g_n(\mu)$ と $\mathcal{O}_n(\mu)$ が支配する。 = 繰り込み可能

さらに μ を小さくしても、 $g_n(\mu)$ の大きさが変わるのみで、Hamiltonian の形は変わらない。~ scale independent ⇔系は繰り込み群のIR固定点に近づく。

Universailty: 低エネルギー極限で、もとの系のミクロな詳細がほと んど効かなくなり、幾つかのクラス(universality class)の振る舞いに分類 される。

Universality class は非常にしばしば系の対称性によって支配される。

こうした理由で、QFT、特に繰り込み可能なQFT、は有用かつ強力。

- ミクロな詳細を知らなくても、低エネルギーの物理が整合的に記述できる。
- 我々の無知は有限個の $g_n(\mu)$ に押し込められる \Rightarrow 実験値で置き換えられる。

1.1 参考書

- M.E. Peskin and D.V. Schroeder, An introduction to Quantum Field Theory, Perseus Books, 1995
- S. Weinberg, The Quantum Theory of Fields I, II, III, Cambridge University press, 1995
- M. Sredniki, Quantum Field Theory, Cambridge University press, 2007
- J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford, 2002 (4th edition)
- C. Itzykson and J.B. Zuber, Quantum Field Theory, McGraw-Hill, 1980
- J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields, McGraw-Hill, 1965
- M. Maggiore, A Modern Introduction to Quantum Field Theory, Oxford University press, 2005
- G. Sterman, An Introduction to Quantum Field Theory, Cambridge University

press, 1993

- F. Mandl and G. Shaw, Quantum Field Theory, John Wiley and Sons, 1984
- P. Ramond, Field Theory, A Modern Primer, Addison-Wesley, 1990
- ◆九後汰一郎、ゲージ場の量子論Ⅰ,Ⅱ, 培風館, 1989
- ♦ 坂井典佑, 場の量子論、 裳華房, 2002
- ◆ 西島和彦, 場の理論, 紀伊国屋書店, , 1987
- ◆ 柏太郎、演習場の量子論, サイエンス社, 2001
- ◆永長直人、物性論における場の量子論、岩波書店,1995

2 場の理論の出現

場の理論は本来、低エネルギー有効理論として出現するものである。 その最も簡単なプロトタイプを述べる。

2.1 媒質中の古典的な波動

結晶格子中の様々な波動の場 🗮 粒子的な素励起

- phonon: 弾性振動の素励起
- magnon: 電子スピン波の励起
- plasmon: 電子と正イオンからなるプラズマ中の電子の集団運動の素励起
- exciton: 誘電体の分極の場の中性的な励起
- 以下、典型例として phonon 場を考察。

2.1.1 音響フォノン (acoustic phonon)

結晶を構成する primitive cell 中に n 個のイオンがある場合を考えると、次の二種類の励起が起こる。

<u>acoustic branch</u>: 音波のように、すべてのイオンが同一方向に滑らかに振 動。

3次元では、縦波1個と横波2個の三つのモードあり。 分散関係の特徴: $\omega_k \rightarrow 0$ as $k \rightarrow 0$.

optical branch: 正負のイオンが異なる方向に運動。

 \Rightarrow 分極がおこりそれが光子と相互作用する(ゆえ optical と呼ばれる). 分散関係の特徴: $\omega_k \rightarrow \omega_0 \neq 0$ as $k \rightarrow 0$.

> Acoustic $O + \bullet O \longrightarrow O \rightarrow O \rightarrow O$ $\bullet \bullet \bullet \bullet \bullet \bullet$

Optical

qft1-2-2

以下では1+1次元の音響フォノンを考える。

低エネルギー(連続極限)で自由場の理論が生ずる。 簡単な理論だが、次の意味で非常に教育的。

- ◆相互作用はないが、「繰り込み」の考え方と関係する「連続極限」の取り方を学ぶことができる。
- ◆ ニュートン力学を用いるにも拘わらず "relativistic" massless field が現れる。

この現象は、格子を形成する基底状態が、並進対称性を自発的に破ることにより生ずる。

Massless phonon 場は Nambu-Goldstone 場と解釈できる。

Notation:

- m = 質点の質量 (1)
- N = 質点の数 (2)

$$a =$$
格子間隔 $= \frac{1}{\Lambda}$ (3)

$$L = line の長さ = Na$$
 (4)

$$x_n = na = n$$
番目の質点の平衡位置 (5)

 $\zeta_n(t) = n$ 番目の質点のlineに沿った方向の変位 (6)

便宜のため、Nを偶数ととり、nは次の範囲を走るものとする:

$$-\frac{N}{2}+1 \le n \le \frac{N}{2} \tag{7}$$

qft1-2-4

Lagrangian と運動方程式:

 $\kappa = バネ定数 <math>a - b = 8 < 0 \\ \pi < 0 \\$

Lagrangian、Hamiltonian、および運動方程式

$$L = \frac{1}{2}m \sum_{n} \dot{\zeta}_{n}^{2} - \frac{1}{2}\kappa \sum_{n} \left(\zeta_{n+1} - \zeta_{n}\right)^{2}$$
(8)

$$H = \frac{1}{2m} \sum_{n} \pi_{n}^{2} + \frac{1}{2} \kappa \sum_{n} \left(\zeta_{n+1} - \zeta_{n} \right)^{2}$$
(9)

$$\pi_n = m\dot{\zeta}_n \tag{10}$$

$$m\frac{d^2\zeta_n}{dt^2} = \kappa \left[(\zeta_{n+1} - \zeta_n) - (\zeta_n - \zeta_{n-1}) \right]$$
(11)

□ Fourier 展開 :

周期境界条件: $\zeta_{n+N} = \zeta_n$

 $\zeta_n(t)$ をlattice Fourier series に展開:

$$\begin{aligned} \zeta_n(t) &= \frac{1}{\sqrt{N}} \sum_k \zeta_k(t) e^{ikx_n} \quad (12) \\ \zeta_n &= \mathbf{x} \quad \Rightarrow \quad \zeta_{-k} = \zeta_k^* \quad (13) \end{aligned}$$

Periodicity \Rightarrow 波数 k は離散的:

$$e^{ikNa} = 1 \longrightarrow ka = \frac{2\pi r}{N}, \quad r \in \mathbb{Z}$$
 (14)

さらに、 $x_n = na$ ゆえ、 $e^{ikx_n} = e^{ikna} = e^{i(k+(2\pi/a))na}$

 $\Rightarrow k$ の値は $2\pi/a$ の整数倍だけ自由度あり。

これより、kの値を"first Brillouin zone"に制限できる:

$$-\frac{\pi}{a} < k \leq \frac{\pi}{a}$$
 (first Brillouin zone) (15)

これは $-rac{N}{2}+1 \leq r \leq rac{N}{2}$ に対応。自由度の数は N

★ First Brillouin zoneの概念は、 *a*が有限であることから生じている。 逆 Fourier 変換:

$$\zeta_k = \frac{1}{\sqrt{N}} \sum_n \zeta_n e^{-ikx_n} \tag{16}$$

これは次の公式を用いて容易にチェックできる

$$\sum_{k} e^{ika(m-n)} = N\delta_{mn} \tag{17}$$

演習:この公式をkおよびrの区間に注意して導け。

(12)をLagrangian に代入:

$$L = \frac{m}{2} \sum_{k} \dot{\zeta}_{k} \dot{\zeta}_{-k} - \kappa \sum_{k} (1 - \cos ka) \zeta_{k} \zeta_{-k} \qquad (18)$$

□ 運動方程式と分散関係:

運動方程式:

$$\ddot{\zeta}_{k} + \underbrace{\frac{2\kappa}{m}(1 - \cos ka)\zeta_{k}}_{\omega_{k}^{2}} = 0$$
(19)

解:

$$\zeta_k(t) = \zeta_k e^{-i\omega_k t} \tag{20}$$

$$\zeta_n(t) = \frac{1}{\sqrt{N}} \sum_k \zeta_k e^{ikx_n - i\omega_k t}$$
(21)

ここで、分散関係と位相速度 v_{ϕ} は次のように与えられる:

$$\omega_{k} = \sqrt{\frac{2\kappa}{m}(1 - \cos ka)} = \sqrt{\frac{4\kappa}{m}} \left| \sin \frac{ka}{2} \right| \quad (22)$$
$$v_{\phi} \equiv \frac{\omega_{k}}{k} \quad (23)$$

• $k \rightarrow 0$ で分散関係は線形になる: $\omega_k \sim |k|_{\circ}$

 \Box Hamiltonian:

 ζ_k に対する共役運動量:

$$\pi_k = \frac{\partial L}{\partial \dot{\zeta}_k} = m \dot{\zeta}_{-k} \tag{24}$$

 π_n のFourier展開:

$$egin{aligned} \pi_n &= m \dot{\zeta}_n = rac{1}{\sqrt{N}} \sum m \dot{\zeta}_k e^{ikx_n} \ &= rac{1}{\sqrt{N}} \sum m \dot{\zeta}_{-k} e^{-ikx_n} = rac{1}{\sqrt{N}} \sum \pi_k e^{-ikx_n} \end{aligned}$$

Exponent が逆符号になっていることに注意。

Hamiltonian:

$$H = \frac{1}{2m} \sum_{k} \pi_k \pi_{-k} + \frac{m}{2} \sum_{k} \omega_k^2 \zeta_k \zeta_{-k} \qquad (25)$$

2.1.3 二つの極限と古典場の理論の出現

この系に対して次の二つの極限が考えられる。

◆ Continuum or low-energy limit:
長波長極限、すなわち、λ = 2π/k ≫ a。これは、連続極限 a → 0 とも解釈できる。
L は固定しているからkは離散的のまま。
◆ Infinite volume limit:
系の大きさを無限大にする極限、すなわち、L→∞.
kの値は連続的になる。

□ Continuum Limit:

物理的に意味のある結果を得るには、観測量を固定した、次のような極限 を考える必要がある。

1. L = Naを固定して、 $a \rightarrow 0$ 、 $N \rightarrow \infty$

2. 質量密度ho = m/aを固定して、 $m \to 0$

3. (Longitudinal) tension $T_l = \kappa a$ を固定して、 $\kappa \to \infty$

このような操作はrenormalizationの最も簡単な例。 物理的な量を固定してcut-off $\Lambda = 1/a$ を無限大に飛ばす。

運動方程式の $a \rightarrow 0$ 極限:

運動方程式(11)をaで割ると

$$\frac{m}{a}\frac{d^{2}\zeta_{n}}{dt^{2}} = \kappa a \left[(\zeta_{n+1} - \zeta_{n})/a - (\zeta_{n} - \zeta_{n-1})/a \right] \frac{1}{a}$$

$$\therefore \qquad \rho \frac{d^{2}\zeta_{n}}{dt^{2}} = T_{l} \left[(\zeta_{n+1} - \zeta_{n})/a - (\zeta_{n} - \zeta_{n-1})/a \right] \frac{1}{a} \qquad (26)$$

qft1-2-12

場の概念の導入:

$$egin{aligned} &\zeta_n=\zeta(x_n,t)$$
と書くと $&rac{\zeta_{n+1}-\zeta_n}{a}=rac{1}{a}\left(\zeta(x_n+a,t)-\zeta(x_n,t)
ight)=\zeta'(x_n,t)+\mathcal{O}(a) \end{aligned}$ (27) さらに、

$$\frac{\zeta'(x_n,t)-\zeta'(x_{n-1},t)}{a}=\zeta''(x_{n-1},t)+\mathcal{O}(a)\simeq\zeta''(x_n) \quad (28)$$

a
ightarrow 0に伴って、 x_n は連続変数xになる。 \Rightarrow 次の波動方程式を得る。

$$\frac{1}{v^2} \frac{\partial^2 \zeta}{\partial t^2} = \frac{\partial^2 \zeta}{\partial x^2} \quad (29)$$
$$\Box \Box \Box \nabla \quad v = \sqrt{\frac{T_l}{\rho}} \quad (30)$$

これを出すラグランジュ密度

$$\mathcal{L} = \frac{1}{2} T_l \left\{ \left(\frac{\partial \zeta}{\partial (vt)} \right)^2 - \left(\frac{\partial \zeta}{\partial x} \right)^2 \right\} \quad (31)$$

これはvを"光速"と同定すれば、相対論的な形。(ニュートン力学しか用いていない。)

この現象は、分散関係が線形になる場合に必ず起こる。 後にフェルミオンに対しても同様なことが起こることを見る。

運動量変数の連続極限に関する注意: 定義より、

$$\pi_n = m\dot{\zeta}_n = \rho\dot{\zeta}_n a \tag{32}$$

ナイーブな連続極限 $a \rightarrow 0$ ではゼロになる。従って、運動量の場 $\pi(x,t)$

の定義としては

$$\pi(x,t) = \lim_{a \to 0} \frac{\pi_n}{a} = \rho \dot{\zeta}(x,t)$$
(33)

を採用する必要がある。

分散関係の連続極限:分散関係のレベルでの連続極限をとることもできる:

$$\begin{aligned}
\omega(k) &= k \sqrt{\frac{\kappa a}{m/a}} \frac{\sin ka/2}{ka/2} \\
&\xrightarrow{a \to 0} k \sqrt{\frac{T_l}{\rho}} = k v_{\phi}
\end{aligned} \tag{34}$$

これより、運動方程式中に現れるvが位相速度であることがわかる。

フーリエモードの連続極限:

 $x_n = na$ の1ステップの変化は $\Delta x_n = a$ 。従って、

$$\begin{aligned} \zeta_k(t) &= \frac{1}{\sqrt{N}} \sum_n \zeta(x_n, t) e^{-ikx_n} \\ &= \frac{1}{a} \frac{1}{\sqrt{N}} \sum_n \zeta(x_n, t) e^{-ikx_n} \Delta x_n \\ &\longrightarrow \frac{1}{\sqrt{a}} \frac{1}{\sqrt{L}} \int_{-L/2}^{L/2} dx \zeta(x, t) e^{-ikx} \end{aligned}$$
(35)

これは $a \rightarrow 0$ で発散。 一方、運動量のモードは

$$\pi_{k}(t) = m\dot{\zeta}_{-k}(t) \rightarrow \frac{m}{\sqrt{a}} \frac{1}{\sqrt{L}} \int_{-L/2}^{L/2} dx \dot{\zeta}(x,t) e^{-ikx}$$
$$= \sqrt{a} \frac{\rho}{\sqrt{L}} \int_{-L/2}^{L/2} dx \dot{\zeta}(x,t) e^{-ikx}$$
(36)

これは逆に $a \rightarrow 0$ でゼロになる.

正しい連続極限: Rescaling した再定義が必要

$$Q_k(t) \equiv \sqrt{a} \zeta_k(t), \qquad P_k(t) \equiv rac{1}{\sqrt{a}} \pi_k(t) \quad (37)$$

共役な変数が逆にスケールされている。 ⇒ 量子化を行う際に重要。

- 正しい rescaling であることの確認:
- もともとの Fourier 変換

$$\begin{aligned} \zeta(x,t) &= \sum \frac{1}{\sqrt{N}} \zeta_k(t) e^{ikx} = \frac{1}{\sqrt{N}} \sum \frac{1}{\sqrt{a}} Q_k(t) e^{ikx} \\ &= \frac{1}{\sqrt{L}} \sum Q_k(t) e^{ikx} \end{aligned} \tag{38} \\ \pi(x,t) &= \lim_{a \to 0} \frac{\pi_n}{a} = \frac{1}{a} \frac{1}{\sqrt{N}} \sum \pi_k(t) e^{-ikx} = \frac{1}{\sqrt{L}} \sum P_k(t) e^{-ikx} \end{aligned} \tag{39}$$

連続的な場合の正しい有限なFourier 変換になっている。

ハミルトニアンを新しい変数で書き直す:

$$H = \frac{1}{2m} \sum \pi_k \pi_{-k} + \frac{1}{2m} \sum \omega_k^2 \zeta_k \zeta_{-k}$$

$$= \frac{a}{2m} \sum P_k P_{-k} + \frac{m}{2a} \sum \omega_k^2 Q_k Q_{-k}$$

$$= \frac{1}{2\rho} \sum P_k P_{-k} + \frac{\rho}{2} \sum \omega_k^2 Q_k Q_{-k}$$
(40)

正しく有限な量で書かれている。

 \Box Infinite Volume $(L \to \infty)$ Limit:

Fourier モードの考察:
運動量の間隔
$$\Delta k = 2\pi/L \to 0_{\circ}$$
 (38)より
 $\zeta(x,t) = \frac{1}{\sqrt{L}} \frac{L}{2\pi} \sum_{k} Q_{k} e^{ikx} \Delta k$
 $\longrightarrow \frac{\sqrt{L}}{2\pi} \int dk Q_{k} e^{ikx}$ (41)

これは $L \to \infty$ で発散。Rescalingを行う必要あり。

有限になるべき量:
$$q_k \equiv \sqrt{\frac{L}{2\pi}}Q_k$$
 (42)

$$\Rightarrow \quad \zeta(x,t) = \frac{1}{\sqrt{2\pi}} \int dk \, q_k e^{ikx} \tag{43}$$

運動量のモード P_k : (39)より、 Q_k と同型の再定義が必要

有限になるべき量:
$$p_k \equiv \sqrt{\frac{L}{2\pi}} P_k$$
 (44)

$$\Rightarrow \quad \pi(x,t) = \frac{1}{\sqrt{2\pi}} \int dk \, p_k e^{-ikx} \tag{45}$$

qft1-2-19

注: $a \rightarrow 0$ 極限をとる際と異なる。(連続極限では、 $\zeta_k \geq \pi_k$ は逆にスケール。)量子化の際にこの違いはより明らかになる。

上記のrescalingでハミルトニアンは有限に保たれる:

$$H = \frac{1}{2\rho} \sum P_k P_{-k} + \frac{\rho}{2} \sum \omega_k^2 Q_k Q_{-k}$$

$$= \frac{1}{2\rho} \sum_k p_k p_{-k} \Delta k + \frac{\rho}{2} \sum \omega_k^2 q_k q_{-k} \Delta k$$

$$= \frac{1}{2\rho} \int dk \, p_k p_{-k} + \frac{\rho}{2} \int dk \, \omega_k^2 q_k q_{-k}$$
(46)

まとめと考察

- 1. 以上、格子系から古典フォノン場の理論を導出した。
 - こうして出現した場の理論を離散化してまた格子上の系にすることは簡単。しかし、それはもとの系には戻らない。

もともとの分散関係 ($k \geq 0$ の領域)

$$\omega_k = \sqrt{\frac{4\kappa}{m}} \sin \frac{ka}{2} = \sqrt{\frac{4\kappa}{m}} \left(\frac{ka}{2} - \frac{1}{3!} \left(\frac{ka}{2}\right)^3 + \cdots\right)$$
(47)

場の理論: 低エネルギー極限をとるので、第1項のみを保持。

完全に元に戻すには、無限個のkの高次の巾を付加する必要あり。しか しそれらは低エネルギーでは寄与しないいわゆるirrelevant terms。

Universalityの概念の例: 低エネルギーでの分散関係が $\omega_k = v_{\phi}|k|$ の形である限り、同じ場の理論が得られる。

レポート問題 I x-y平面上の格子間隔aの(a) 正方格子、及び(b) 三 角格子上に質量 mの質点が配置され、最隣接間の質点が互いに張力 Tのバネで繋がれている。これらの質点は平面に垂直な $\pm z$ 方向にわずかに($\ll a$)変位できるとする。この二つの系を記述するLagrangian を構成し、さらにその連続極限($a \rightarrow 0$ 極限)を考察して場の理論のLagrangian を導け。またこの結果をuniversalityの観点から論ぜよ。

フォノン場が massless であることの理解: もともとの格子系での対称性

(a) Discrete translation in space

$$x_n \longrightarrow x_n + ma$$
 (48)

 $a \rightarrow 0$ で連続的な並進対称性となる。

(b) Continuous translation in time

$$\boldsymbol{t} \longrightarrow \boldsymbol{t} + \boldsymbol{t_0}$$
 (49)

(c) 場の空間上でのglobal translation (縦振動を考えれば明らか)

$$\zeta_n \longrightarrow \zeta_n + c$$
 for all n (50)

全てのnに対して $\zeta_n = c_0$ である配位は、(任意の c_0 に対して)エネ ルギー的に縮退した「真空」を表す = 真空の無限縮退 c_0 の値をひとつ定めると(例えば $c_0 = 0$)この対称性が自発的に破 れる。⇒ その配位のまわりの揺らぎは massless ($\omega_k \propto |k|$)になる = Nambu-Goldstone 励起 □ 対称性の自発的破れ:

対称性の隠れた形での実現。

Global 対称性の破れの例: T = 0 (低温相) での強磁性体の回転対称性

ハミルトニアン自体は回転対称 \Rightarrow 真空の集合 $\{|\Omega_{\theta}\rangle\}$ は回転に対して不変 であり、縮退している。

 $|\Omega_{ heta}
angle = R|\Omega_{0}
angle\,, \qquad [H,R]=0\,, \qquad H|\Omega_{0}
angle = E|\Omega_{0}
angle$

 $\Rightarrow \hspace{0.2cm} H|\Omega_{ heta}
angle = H(R|\Omega_{0}
angle) = R(H|\Omega_{0}
angle) = E(R|\Omega_{0}
angle) = E|\Omega_{ heta}
angle$

実際に実現するのは、そのうちのひとつの真空 ⇒ 回転対称性の自発的破れ。

自発的破れの現象の特徴

- igle Local spinの期待値がnon-zero になる $\langleec{S}(ec{x})
 angle
 eq 0$
- $igstar{T}
 ightarrow T_c$ (臨界温度)で $\langle ec{S}(ec{x})
 angle
 ightarrow 0$: $\langle ec{S}(ec{x})
 angle = ext{order parameter}$
- ◆ $|\Omega_{\theta}\rangle$ のエネルギーは縮退 → 長波長のスピン波を起こすのにエネル ギーがほとんど要らない。
 - \Rightarrow Massless (gapless) excitation = Nambu-Goldstone $\exists k$
 - 通常の対称性の自発的破れ: NGモードはボゾン
 - フェルミ的対称性の自発的破れ: NGモードはフェルミオン (例を後述)

Masslessの場を生成する非常に一般的でかつ自然なメカニズム。
2.2 古典場の量子化

この節の目的: Phonon 場を例にとって、通常の量子力学から場の量子化の規則を導く

□ 場の量子化の規則の導出:

元の格子系の量子化:

$$[\boldsymbol{\zeta}_m, \boldsymbol{\pi}_n] = i\boldsymbol{\delta}_{mn}, \quad \text{rest} = \mathbf{0} \tag{51}$$

フーリエモードに対しては

$$\begin{aligned} [\zeta_k, \pi_{k'}] &= \frac{1}{N} \sum_{m,n} [\zeta_m, \pi_n] e^{ikx_m} e^{-ik'x_n} \\ &= \frac{i}{N} \sum_m e^{i(k-k')am} = i\delta_{kk'} \end{aligned}$$
(52)

生成消滅演算子の導入:

ハミルトニアンを思い出す:

$$H = \sum_{k} \left(\frac{1}{2m} \pi_{k} \pi_{-k} + \frac{m}{2} \omega_{k}^{2} \zeta_{k} \zeta_{-k} \right)$$
$$= \sum_{k} \omega_{k} \left(\frac{1}{2} m \omega_{k} \zeta_{k} \zeta_{-k} + \frac{1}{2m \omega_{k}} \pi_{k} \pi_{-k} \right)$$
(53)

括弧内を「因数分解」して次の生成消滅演算子を導入:

$$a_k \equiv \frac{1}{\sqrt{2m\omega_k}} (m\omega_k \zeta_k + i\pi_{-k})$$
 (54)

$$a^{\dagger}_{k} \equiv \frac{1}{\sqrt{2m\omega_{k}}} \left(m\omega_{k}\zeta_{k}^{\dagger} - i\pi_{-k}^{\dagger} \right)$$
(55)

これらは次のHeisenberg algebra を満たす

$$\left[a_{k}, a^{\dagger}_{k'}\right] = \delta_{kk'}, \quad \text{rest} = 0 \tag{56}$$

ハミルトニアンは次の良く知られた形になる:

$$H = \sum_{k} \omega_k (a^{\dagger}_k a_k + \frac{1}{2})$$
 (57)

 a_k, a_k^\dagger の定義式(54)を逆に解くと

$$\zeta_k = \frac{1}{\sqrt{2m\omega_k}} (a_k + a^{\dagger}_{-k}) \tag{58}$$

$$\pi_k = -i \sqrt{\frac{m\omega_k}{2} \left(a_{-k} - a^{\dagger}_k\right)} \tag{59}$$

これを ζ_n and π_n の表式に代入すると

$$\begin{aligned} \zeta_n &= \frac{1}{\sqrt{N}} \sum_k \frac{1}{\sqrt{2m\omega_k}} (a_k + a^{\dagger}_{-k}) e^{ikx_n} \\ &= \sum_k \frac{1}{\sqrt{2mN\omega_k}} \left(a_k e^{ikx_n} + a^{\dagger}_k e^{-ikx_n} \right) \end{aligned} \tag{60} \\ \pi_n &= \frac{1}{i} \sqrt{\frac{m\omega_k}{2N}} \left(a_k e^{ikx_n} - a^{\dagger}_k e^{-ikx_n} \right) \end{aligned}$$

連続極限:

Fourier mode \mathcal{O} rescaling

$$Q_k = \sqrt{a} \zeta_k, \qquad P_k = \frac{\pi_k}{\sqrt{a}}$$
 (62)

これは <u>Heisenberg algebra を不変に保つ</u>。 生成消滅演算子による表式:

 $Q_k = \frac{1}{\sqrt{2\rho\omega_k}} (a_k + a^{\dagger}_{-k})$ (63)

$$P_{k} = -i\sqrt{\frac{\rho\omega_{k}}{2}}\left(a_{-k} + a^{\dagger}_{k}\right) \tag{64}$$

 ζ_n の連続極限: \Leftarrow (60)

$$\zeta(x,t) = \sum_{k} \frac{1}{\sqrt{2\rho L \omega_k}} \left(a_k e^{ikx} + a^{\dagger}_k e^{-ikx} \right)$$
(65)

 π_n の連続極限: $\pi(x,t) = \lim_{a o 0} \pi_n / a$ (61)より

$$\pi(x,t) = \frac{1}{i} \sqrt{\frac{\rho \omega_k}{2L}} \left(a_k e^{ikx} - a^{\dagger}_k e^{-ikx} \right)$$
(66)

 $\zeta(x,t)$ と $\pi(y,t)$ の交換関係の導出:

- フーリエ展開から求める。
- より直接的には次のように求められる。 基本関係式より、

 $[\zeta(x,t),\pi(y,t)]\,=\,\lim_{a o 0}\,[\zeta_m,\pi_n/a]=rac{\imath}{a}\delta_{mn}\longrightarrow\infty~({\sf UV}$ 発散)

発散の性質を見る。 $\pi(y,t)$ を積分した場合を考えると、

$$\left[\zeta(x,t),\int dy\pi(y,t)
ight]\,=\,\lim_{a o 0}\left[\zeta_m,\sum_n(\pi_n/a)a
ight]=i\sum_n\delta_{mn}=i$$

これより、場の交換関係は、

$$[\boldsymbol{\zeta}(\boldsymbol{x},\boldsymbol{t}),\boldsymbol{\pi}(\boldsymbol{y},\boldsymbol{t})] = = i\boldsymbol{\delta}(\boldsymbol{x}-\boldsymbol{y}), \quad \text{rest} = \boldsymbol{0} \quad (67)$$

= 量子力学の第一原理からの場の量子化の規則の導出

演習: この結果をフーリエモードの交換関係から導出せよ。

時間依存性:

 $a_k(t)$ および $a^{\dagger}_k(t)$ のt 依存性: (57)のハミルトニアンを用いると、時間発展は、

$$\frac{da_k}{dt} = i[H, a_k] = -i\omega_k \quad \Rightarrow \quad a_k(t) = a_k e^{-i\omega_k t}$$
(68)
$$\frac{da^{\dagger}_k}{dt} = i[H, a^{\dagger}_k] = i\omega_k \quad \Rightarrow \quad a^{\dagger}_k(t) = a^{\dagger}_k e^{i\omega_k t}$$
(69)

これより、運動方程式を満たす場 $\zeta(x,t)$ は

$$\zeta(x,t) = \sum_{k} \frac{1}{\sqrt{2\rho L \omega_k}} \left(a_k e^{i(kx - \omega_k t)} + a^{\dagger}_k e^{-i(kx - \omega_k t)} \right)$$
(70)

と書ける。

Infinite Volume $(L \to \infty)$ Limit

解析は古典論と同じ。 $\zeta(x,t)$ は次のようになる:

$$\begin{aligned} \zeta(x,t) &= \sum_{k} \frac{1}{\sqrt{2\rho L\omega_{k}}} \frac{L}{2\pi} \left(a_{k} e^{i(kx-\omega_{k}t)} + a^{\dagger}_{k} e^{-i(kx-\omega_{k}t)} \right) \Delta k \\ &\to \frac{1}{\sqrt{2\pi\rho}} \int \frac{dk}{\sqrt{2\omega_{k}}} \left(a(k) e^{i(kx-\omega_{k}t)} + a^{\dagger}(k) e^{-i(kx-\omega_{k}t)} \right) \end{aligned}$$
(71)

ここでkの連続関数としての生成消滅演算子を次のscalingで定義:

$$a(k) \equiv \sqrt{\frac{L}{2\pi}} a_k, \quad a^{\dagger}(k) \equiv \sqrt{\frac{L}{2\pi}} a^{\dagger}_k$$
 (72)
両方とも同じ scaling $\Leftarrow q_k = \sqrt{L/2\pi} Q_k, p_k = \sqrt{L/2\pi} P_k$

これらの交換関係は $\sim L$ のように発散。 $\Leftrightarrow \delta$ 関数

$$1 = \sum_{k} [a_{k}, a^{\dagger}_{k'}] = \sum_{k} [a_{k}, a^{\dagger}_{k'}] \Delta k \frac{L}{2\pi}$$
$$= \int dk [a(k), a^{\dagger}(k')]$$
$$\therefore [a(k), a^{\dagger}(k')] = \delta(k - k')$$
(73)

2.3 粒子に対する量子場の概念:「第二量子化」

量子場が出現するもう一つの機構 = 「第二量子化」

◆ これまで述べた場の出現の機構:

媒質 = 無限多体系 $\stackrel{(K_{x,x,u}=r_{x,u}=r_{x,u}}{\longrightarrow}$ 古典場 $\stackrel{\mathbb{B}^{FR}}{\longrightarrow}$ 量子場 $\stackrel{\mathbb{B}^{BR}}{\longrightarrow}$ 別できない粒子系

♦ 第二量子化で生ずる量子場:(ボゾンの場合)

識別出来ない $粒子系 \xrightarrow{\equiv fk}$ 完全対称な波動関数の作る Hilbert 空間 $\widehat{\downarrow}$ a_n^\dagger, a_n で構築される抽象的 Hilbert 空間 \downarrow 座標表示 $a(x)^\dagger, a(x) \Rightarrow$ 場 $\zeta(x), \pi(x)$

¹Dirac (1927), "Principles of Quantum Mechanics" (1958)

特徴:

- 格子上の "atom" のように確定した位置のまわりに局在化している粒
 子系には適用できない。(識別可能)
- 弱い相互作用をしている「素励起」にあたる粒子系に対して適用される。但し、「媒質」は捨象されてしまっている。
- 直接量子化された場が生ずる。
- □ 同種の、識別できる*N* 粒子系:
- U =各粒子の波動関数の作る Hilbert 空間
- $\{|\phi_n\}$: Uの規格直交完全系(CONS)。丸ケットで1粒子状態を表す。
- 全系のHilbert 空間: $\mathcal{H}_N = \otimes U^N$

 \mathcal{H}_N の一般の状態

$$\sum C_{n_1,n_2,\dots,n_N} |\phi_{n_1}\rangle |\phi_{n_2}\rangle \cdots |\phi_{n_N}\rangle$$
(74)

□ 同種の、識別できないN 粒子系:
 識別不可能 ⇒ 次の操作が必要

- ボゾンに対しては完全対称化
- ●フェルミオンに対しては完全反対称化

以下、ボゾンの場合を考察。

完全対称化された波動関数を次のように表す:

$$|\Psi_{n_1...n_N}\rangle \equiv \mathcal{S}(|\phi_{n_1}\rangle|\phi_{n_2})\cdots|\phi_{n_N}\rangle) \in \mathcal{SU}^N$$
 (75)

S = 対称化の演算子

□ 抽象的ヒルベルト空間への写像:

 a^{\dagger}_{m}, a_{n} : 抽象的なヒルベルト空間 Vにおける生成消滅演算子

$$\begin{bmatrix} a_m, a^{\dagger}_n \end{bmatrix} = \delta_{mn}, \quad \text{rest} = 0$$
 (76)

真空状態の定義

$$a_m|0\rangle = 0, \qquad \langle 0|a^{\dagger}_m = 0 \qquad (77)$$

Fock 空間 V: $|0\rangle$ 上に<u>有限個の</u> a^{\dagger}_{n} を働かせてできる状態の集合 これは粒子数が一定値 N の部分空間 V_{N} の直和に分解できる:

$$\boldsymbol{V} = \bigoplus_{\boldsymbol{N}} \boldsymbol{V}_{\boldsymbol{N}} \tag{78}$$

 V_N に属する状態

$$|\psi_{n_1\dots n_N}\rangle = a^{\dagger}{}_{n_1}a^{\dagger}{}_{n_2}\cdots a^{\dagger}{}_{n_N}|0\rangle \in V_N$$
 (79)

これは自動的に完全対称化されている。

 \Rightarrow 次の線形な同型写像 $T: V_N \rightarrow \mathcal{S}U^N$ が定義できる:

$$T\left(a^{\dagger}_{n_1}a^{\dagger}_{n_2}\cdots a^{\dagger}_{n_N}|0\rangle\right) = \mathcal{S}(|\phi_{n_1})|\phi_{n_2})\cdots |\phi_{n_N}\rangle) (80)$$

この写像は<u>状態間の内積を保存</u>する。 $\Rightarrow SU^N$ を V_N と同定すれば、ユニタリー写像と見なせる。

□ 基底の変換:

 $\{|f_{\alpha})\} = 別の CONS:$ 以前の基底との関係

$$|\phi_n\rangle = \sum_{\alpha} |f_{\alpha}\rangle (f_{\alpha}|\phi_n)$$
 (81)

 a_{lpha} 、 a^{\dagger}_{lpha} = 基底 { $|f_{lpha}$)}対する生成消滅演算子 以下での仮定: 「粒子数」を変えない基底の変換²のみ考え、

$$a^{\dagger}_{n} = \sum_{\alpha} a^{\dagger}_{\alpha}(f_{\alpha}|\phi_{n})$$
 (82)

が成り立つことを要請。 ⇔ 変換は生成演算子と消滅演算子を混ぜない。 ⇔ 真空状態 |0> はすべての基底で共通

 $^{^{2}}$ 粒子数を変える変換 = Bogoliubov 変換

□ 量子場の出現:

特に、基底として、座標の固有関数系 $\{|x\}$ をとった場合 $a_n \rightarrow a(x), a^{\dagger}_n \rightarrow a^{\dagger}(x)$ 量子場 a(x) and $a^{\dagger}(x)$ が得られる。 一粒子状態に対する写像T:

$$Ta^{\dagger}(x)|0\rangle = |x\rangle$$

$$\langle 0|a(x)T^{-1} = (x|$$
(83)
(84)

以前得られたフォノン場(等)との関係 運動量基底に移ると

$$a^{\dagger}(x) = \int dk a^{\dagger}(k)(k|x) = \int \frac{dk}{\sqrt{2\pi}} a^{\dagger}(k) e^{-ikx}$$
(85)
$$a(x) = \int dk a(k)(x|k) = \int \frac{dk}{\sqrt{2\pi}} a(k) e^{ikx}$$
(86)

これから、エルミートな場 $\zeta(x)$ とその共役場 $\pi(x)$ を定義したい。

大きな自由度あり。 $a(k), a^{\dagger}(k)$ の一次の場合の最も一般な形

$$\zeta(x) = \frac{1}{\sqrt{2}} \int \frac{dk}{\sqrt{2\pi}} \left(\mathbf{f}(\mathbf{k}) a(\mathbf{k}) e^{i\mathbf{k}x} + \mathbf{f}^*(\mathbf{k}) a^{\dagger}(\mathbf{k}) e^{-i\mathbf{k}x} \right)$$
(87)

$$\pi(x) = \frac{1}{\sqrt{2}i} \int \frac{dk}{\sqrt{2\pi}} \left(g(k)a(k)e^{ikx} - g^*(k)a^{\dagger}(k)e^{-ikx} \right) \quad (88)$$

• 交換関係 $[\zeta(x),\pi(y)]=i\delta(x-y)$ を満たす条件

$$f(k)g^{*}(k) + f^{*}(k)g(k) = 2$$
 (89)

Remarks

- *f*(*k*) と*g*(*k*)の選択はダイナミックス(ハミルトニアンあるいは分散関係の形)に依る。⇒後に議論
- $\zeta(x), \pi(x)$ はまだ時間*t* に依存していない。*t* 依存性はハミルトニアンの構造による。(上記の場は 後述する Schrödinger picture での場)

□ 演算子の対応:

ダイナミックスの記述にはHamiltonian 等の演算子が必要。 \Rightarrow 空間 SU^N に働く演算子とフォック空間 V^N に働く演算子の間の対応を つける必要あり。

1体演算子

● Uに働く1体演算子 ô⁽¹⁾:

$$\hat{o}^{(1)}|\phi_n) = \sum_m |\phi_m) o^{(1)}_{mn}$$
 (90)

•.
$$o_{mn}^{(1)} = (\phi_m | \hat{o}^{(1)} | \phi_n)$$
 (91)

対応するフォック空間に働く演算子:
 写像 *T*⁻¹を(90) 式に働かせると、

$$LHS = T^{-1}\hat{o}^{(1)}|\phi_n) = (T^{-1}\hat{o}^{(1)}T)T^{-1}|\phi_n)$$

= $(T^{-1}\hat{o}^{(1)}T)a^{\dagger}{}_n|0\rangle$ (92)

$$RHS = \sum_{m} o_{mn}^{(1)} T^{-1} |\phi_m\rangle = \sum_{m} o_{mn}^{(1)} a^{\dagger}_{m} |0\rangle$$
(93)

比較すると、Fock空間での対応する演算子は

$$\hat{O}^{(1)} \equiv T^{-1} \hat{o}^{(1)} T = \sum_{m,n} a^{\dagger}{}_{m} o^{(1)}_{mn} a_{n}$$
 (94)

2体演算子

 $U\otimes U$ に働く2体の演算子 $\hat{o}^{(2)}$

$$\hat{o}^{(2)}\mathcal{S}(|\phi_m)|\phi_n)) = \sum_{r,s} \mathcal{S}(|\phi_r)|\phi_s) o_{rs,mn}^{(2)}$$
(95)

両辺に T^{-1} を作用させると

$$LHS \,=\, (T^{-1} \hat{o}^{(2)} T) T^{-1} \mathcal{S}(|\phi_m)|\phi_n)) = \hat{O}^{(2)} a^{\dagger}{}_m a^{\dagger}{}_n |0
angle \ RHS \,=\, T^{-1} \sum_{r,s} \mathcal{S}(|\phi_r)|\phi_s)) o^{(2)}_{rs,mn} = \sum_{r,s} a^{\dagger}{}_r a^{\dagger}{}_s o^{(2)}_{rs,mn} |0
angle$$

比較すると、Fock空間での2体の演算子として

$$\hat{O}^{(2)} = \sum_{r,s,m,n} \frac{1}{2} a^{\dagger}{}_{r} a^{\dagger}{}_{s} o^{(2)}_{rs,mn} a_{m} a_{n}$$
 (96)

を得る。

□ フォック空間のハミルトニアン:

フォック空間(場の理論)のハミルトニアン \hat{H} は一般にn体演算子の和:

$$\hat{H} = \hat{H}^{(1)} + \hat{H}^{(2)} + \cdots$$
 (97)

 $\hat{H}^{(1)}=$ kinetic term または hopping term $\hat{H}^{(2)},\hat{H}^{(3)},\ldots=$ 相互作用を記述 $\hat{H}^{(1)}$ の例:

$$\hat{H}^{(1)} = \int dk E(k) a^{\dagger}(k) a(k)$$
(98)

$$\left[a(k), a^{\dagger}(k')\right] = \delta(k - k')$$
(99)

座標表示に行くと

$$a(k) = \int \frac{dx}{\sqrt{2\pi}} e^{-ikx} a(x)$$
(100)

$$\hat{H}^{(1)} = \int dx a^{\dagger}(x) E(k = -i\partial_x) a(x)$$
(101)

 $\underline{\hat{H}^{(2)}}$ の例: N体系に働く2体相互作用の典型的な形

$$\hat{h}^{(2)} = \sum_{1 \le i \le j \le N} f(|\hat{x}_i - \hat{x}_j|)$$
 (102)

2粒子状態への基本的作用は、

$$f(|\hat{x} - \hat{y}|)\mathcal{S}|x)|y) = f(|x - y|)\mathcal{S}|x)|y)$$
(103)

フォック空間のハミルトニアン

$$\hat{H}^{(2)} = \frac{1}{2} \int dx dy a^{\dagger}(x) a^{\dagger}(y) f(|x-y|) a(x) a(y)$$

$$= \frac{1}{2} \int dx dy f(|x-y|) \rho(x) \rho(y)$$
(104)

(105)

$$ho(x) = a^{\dagger}(x)a(x) =$$
数密度演算子
 $[
ho(x), a(y)] = -\delta(x-y)a(y), \qquad [
ho(x), a^{\dagger}(y)] = \delta(x-y)a^{\dagger}(y)$
(106)

□ Schrödinger 表示とHeisenberg 表示(Picture): 通常、量子力学は "Schrödinger 表示" で記述。 状態ベクトルは時間tに依存。演算子はt-independent Schrödinger方程式:

$$i\partial_t |\psi_S(t)\rangle = H |\psi_S(t)\rangle$$
 (107)

形式解:

$$|\psi_S(t)\rangle = e^{-iHt}|\psi_S(0)\rangle \equiv e^{-iHt}|\psi_H\rangle$$
 (108)

時間に依存しない状態 $|\psi_H
angle =$ "Heisenberg 表示"の状態

演算子 \hat{O}_S のシュレーディンガー状態間の行列要素の書き換え: $\langle \psi_1(t) | \hat{O}_S | \psi_2(t) \rangle = \langle \psi_{1,H} | e^{iHt} \hat{O}_S e^{-iHt} | \psi_{2,H} \rangle$ $\equiv \langle \psi_{1,H} | \hat{O}_H(t) | \psi_{2,H} \rangle$ (109)

$$\hat{O}_{H}(t) \equiv e^{iHt} \hat{O}_{S} e^{-iHt} = ハイゼンベルグ表示の演算子$$
 (110)

 $\Rightarrow \hat{O}_{H}(t)$ は次の方程式を満たす:

$$\frac{d\hat{O}_H(t)}{dt} = i \Big[H, \hat{O}_H(t) \Big]$$
(111)

Hisenberg 表示の場 $\zeta(x,t)$ とその運動方程式の定義:

$$\begin{aligned} \zeta(x,t) &= e^{iHt}\zeta(x)e^{-iHt} & (112) \\ \frac{d\zeta(x,t)}{dt} &= i[H,\zeta(x,t)] & (113) \end{aligned}$$

相互作用がある場合の a_m と a^{\dagger}_m の Heisenberg 表示における運動方程式:

$$\frac{da_m}{dt} = i[H, a_m] = -i \left(o_{mn}^{(1)} a_n + a^{\dagger}_n o_{mn,rs}^{(2)} a_r a_s + \cdots \right) \quad (114)$$
$$\frac{da^{\dagger}_m}{dt} = i[H, a^{\dagger}_m] = i \left(a^{\dagger}_n o_{nm}^{(1)} + a^{\dagger}_r a^{\dagger}_s o_{rs,nm}^{(2)} a_n + \cdots \right) \quad (115)$$

Remark:

- ◆相互作用を表す非線形項のために、t依存性は一般に複雑。
- ◆ 添え字 *m* が座標 *x* を表す場合、これらの方程式は場の方程式を与える。
- ◆ 量子力学の構造の観点から言えば、量子場は単に状態を作るための道 具。
 - 場の方程式が<u>非線形</u>でも、場を作用させて作られる状態(波動関数)は 通常の線形なSchrödinger 方程式に従う。
 - ⇒相互作用がある場合、第二量子化で得られる量子場を波動関数を演算子に昇格させたものであると見なすのは正しくない。

□ 自由粒子の多体系に対する量子場:

自由粒子を例にとり、非相対論的な場合と相対論的な場合量子場を構成してみる。

復習

$$\zeta(x) = \int \frac{dk}{\sqrt{2\pi}} \zeta(k) e^{ikx}$$
(116)

$$\zeta(k) = \frac{1}{\sqrt{2}} \left(f(k)a(k) + f^*(-k)a^{\dagger}(-k) \right)$$
(117)

$$\pi(x) = \int \frac{dk}{\sqrt{2\pi}} \pi(k) e^{-ikx}$$
(118)

$$\pi(k) = \frac{1}{\sqrt{2}i} \left(\frac{g(-k)a(-k) - g^*(k)a^{\dagger}(k)}{\sqrt{2}i} \right)$$
(119)

• 交換関係
$$[\zeta(x), \pi(y)] = i\delta(x-y)$$
を満たす条件

$$f(k)g^{*}(k) + f^{*}(k)g(k) = 2$$
 (120)

(120)を満たすものとして、

$$f(k) = f(-k) = \frac{1}{g(k)} = \frac{1}{g(-k)} = \Xi$$
(121)

を採用。すると、

$$\zeta(k) = \frac{1}{\sqrt{2}g(k)}(a(k) + a^{\dagger}(-k))$$
(122)

$$\pi(k) = \frac{g(k)}{\sqrt{2}i} (a(-k) - a^{\dagger}(k))$$
(123)

 $a(k), a^{\dagger}(k)$ について解けば

$$a(k) = \frac{1}{\sqrt{2}} \left(g(k)\zeta(k) + \frac{i}{g(k)}\pi(-k) \right)$$
(124)

$$a^{\dagger}(k) = \frac{1}{\sqrt{2}} \left(g(k)\zeta(-k) - \frac{i}{g(k)}\pi(k) \right)$$
 (125)

自由場のハミルトニアンは

$$H = \int dk E(k) a^{\dagger}(k) a(k)$$

$$= \int dk \frac{E(k)}{2} \left(\frac{1}{g(k)^{2}} \pi(k) \pi(-k) + g(k)^{2} \zeta(k) \zeta(-k) \right)$$

$$- \underbrace{i \int dk \frac{E(k)}{2} [\zeta(k), \pi(k)]}_{\text{ゼロ点エネルギ-}E_{0}}$$
(126)

運動エネルギーを正しく規格化するために

$$g(k)^2 = E(k) \tag{127}$$

ととると

$$H = \int dk \frac{1}{2} \left(\pi(k) \pi(-k) + \frac{E(k)^2}{\zeta(k)} \zeta(-k) \right) - E_0 \quad (128)$$

非相対論的な場合: $E(k) = k^2/2m$

$$H = \int dx \left(\frac{1}{2}\pi^2 + \frac{1}{8m^2}(\partial^2\zeta)^2\right) - E_0 \qquad (129)$$

相対論的な場合: $E(k)=\sqrt{k^2+m^2}$

$$H = \int dx \frac{1}{2} \left(\pi^2 + (\partial \zeta)^2 + m^2 \zeta^2 \right) - E_0$$
 (130)

注: 第二量子化から出発する場合、すでにゼロ点エネルギーは引かれている。

□ フェルミオンの場合:

多体フェルミ系の場合には、完全反対称な波動関数から出発。 フォック空間表示に行くには、反交換関係を満たす生成消滅演算子を用い る必要あり:

$$\{\boldsymbol{b}_{\boldsymbol{m}}, \boldsymbol{b}_{\boldsymbol{n}}\} = \{\boldsymbol{b}_{\boldsymbol{m}}^{\dagger}, \boldsymbol{b}_{\boldsymbol{n}}^{\dagger}\} = \boldsymbol{0}$$
(131)

$$\left\{\boldsymbol{b}_{\boldsymbol{m}}, \boldsymbol{b}_{\boldsymbol{n}}^{\dagger}\right\} = \mathbf{1} \tag{132}$$

後はボゾンの場合と全く同様。

2.4 ボーズ凝縮と古典場

場の量子的素励起は ~ $\hbar^2 k^2 / 2m$ のオーダーのミクロなエネルギーを持つ。

マクロな大きさのエネルギーを持つ「古典場」は、量子 場からどのようにして得られるか。

量子場 $\zeta(x,t)$ が与えられたとき、古典場として観測されるのは、その何らかの状態 $|\Psi\rangle$ における期待値のはず

$$\zeta_c(x,t) \equiv \langle \Psi | \zeta(x,t) | \Psi \rangle$$
(133)

適切な問:

「古典場を生み出すような状態 | Ψ > はどのように特徴付けられるか?」

$|\Psi angle$ が持つべき性質:

 $\hbar \rightarrow 0$ の極限で、

1. $\zeta_c(x,t)$ はゼロにならず、しかも古典的な場の方程式を満たす。

2. $\langle \Psi | \zeta(x,t)^n | \Psi \rangle$ が存在して、すべての*n*に対して $\zeta_c(x)^n$ に一致する。

要請2の後半部分を実現するのは容易でない。

例:n=2の場合

$$\langle \Psi | \zeta(x,t)^2 | \Psi \rangle = \sum_{\Phi} \langle \Psi | \zeta(x,t) | \Phi \rangle \langle \Phi | \zeta(x,t) | \Psi \rangle$$
 (134)

一般に無限個の中間状態 Φ が現れるため、 $\zeta_c(x,t)^2 = \langle \Psi | \zeta(x,t) | \Psi \rangle \langle \Psi | \zeta(x,t) | \Psi \rangle$ に一致しない。

コヒーレント状態の概念:

次の事実に注目

1. 量子場 $\zeta(x,t)$ は、 $\zeta(x,t) = a(x,t) + a^{\dagger}(x,t)$ のように、生成消滅部 分に分解できる。

$$[a(x,t), a^{\dagger}(y,t)] \sim \mathcal{O}(\hbar)$$
 (135)

ゆえ、 $\hbar \rightarrow 0$ 極限では、これらは<u>互いに可換な演算子</u>として取り扱う ことができる。

2. $|\Psi\rangle$ が、固有値z(x,t)を持つ $\underline{a(x,t)}$ の固有状態であるとする。 すなわち

$$a(x,t)|\Psi\rangle = z(x,t)|\Psi\rangle$$
 (136)

すると、

$$|a(x,t)^n|\Psi
angle=z(x,t)^n|\Psi
angle\,,\qquad \langle\Psi|a^\dagger(x,t)^n=\langle\Psi|z^*(x,t)^n|\Psi
angle\,,$$

従って

$$\therefore \quad \langle \Psi | \zeta(x,t)^n | \Psi \rangle = \langle \Psi | (a(x,t) + a^{\dagger}(x,t))^n | \Psi \rangle$$
$$= \langle \Psi | (z(x,t) + z^*(x,t))^n | \Psi \rangle$$
$$= \zeta_c(x,t)^n \tag{137}$$

これは要請2に他ならない。

(136)を満たす状態 = コヒーレント状態 (coherent state)

コヒーレント状態の具体形

(1) <u>一種類の振動子 (a, a^{\dagger}) の場合</u>

(x,p)のペアの場合: $[p,x]=-i \Rightarrow p=-i\partial_x$

$$p\psi_k(x) = k\psi_k(x) \quad \Rightarrow \quad \psi_k(x) = ce^{ikx}$$
 (138)

全く同様に、 $\left[a,a^{\dagger}
ight]=\hbar\Rightarrow a=\hbar\partial/\partial a^{\dagger}$ 。ゆえ

$$|a|z\rangle = z|z\rangle, \qquad |z\rangle = c(z)e^{za^{\dagger}/\hbar}|0\rangle$$
 (139)

$$\langle \boldsymbol{z} | \boldsymbol{a}^{\dagger} = \langle \boldsymbol{z} | \boldsymbol{z}^{*}, \quad \langle \boldsymbol{z} | = \langle \boldsymbol{0} | \boldsymbol{e}^{\boldsymbol{z}^{*} \boldsymbol{a} / \hbar} \boldsymbol{c}(\boldsymbol{z})^{*}$$
 (140)

$$|z\rangle = c(z)e^{za^{\dagger}/\hbar}|0\rangle = c(z)\left(|0\rangle + \frac{z}{\hbar}a^{\dagger}|0\rangle + \frac{1}{2!}\left(\frac{z}{\hbar}\right)^{2}a^{\dagger^{2}}|0\rangle + \cdots\right)$$
(141)

コヒーレント状態 = 非常に特別な重みで無限個の励起を含んだ状態

- この状態は、有限個の励起のみ含むフォック空間からはみ出している。
- ●「ボーズ・アインシュタイン凝縮」を記述する。

規格化定数 *c*(*z*) の決定:

$$\langle w|z
angle\,=\,c(z)c(w)^{st}\langle 0|e^{w^{st}a/\hbar}e^{za^{\dagger}/\hbar}|0
angle$$

 $a/\hbar = \partial/\partial a^{\dagger}$ は a^{\dagger} に対する並進演算子であるから、

$$e^{\omega^* a/\hbar} f(a^{\dagger}) e^{-\omega^* a/\hbar} = f(a^{\dagger} + \omega^*)$$
(142)

従って、

$$\langle w|z\rangle = c(z)c(w)^*\langle 0|e^{z(a^{\dagger}+w^*)/\hbar}|0\rangle = c(z)c(w)^*e^{w^*z/\hbar}$$
 (143)

w = zと置き、c(z)を実数にとる convention を用いて規格化すると

$$\langle \boldsymbol{z} | \boldsymbol{z} \rangle = \mathbf{1} \Rightarrow \boldsymbol{c}(\boldsymbol{z}) = \boldsymbol{e}^{-|\boldsymbol{z}|^2/2\hbar}$$
(144)

$$\langle \boldsymbol{w} | \boldsymbol{z} \rangle = \boldsymbol{e}^{-\frac{1}{2\hbar}(|\boldsymbol{z}|^2 + |\boldsymbol{w}|^2 - 2\boldsymbol{w}^* \boldsymbol{z})}$$
(145)

(2) 無限個の自由度を含む場合(時間依存性を省いて記す)

エルミートな場 $\zeta(x)$ を考える:

$$\zeta(x) = \sum_{n} (a_n \phi_n(x) + a^{\dagger}_n \phi^*(x))$$
(146)

適切なコヒーレント状態および $\zeta(x)$ の期待値:

$$|\Psi\rangle = e^{-\frac{1}{2\hbar}\sum_{n}|z_{n}|^{2}}e^{\sum_{n}z_{n}a^{\dagger}n/\hbar}|0\rangle$$
 (147)

$$\langle \Psi | \zeta(x) | \Psi \rangle = \sum_{n} (z_n \phi_n(x) + z_n^* \phi^*(x))$$
 (148)

場の積の期待値: 短距離での発散を回避するために、引数を離す(point-splitting)

$$\langle \Psi | \zeta(x) \zeta(y) | \Psi \rangle = \langle \Psi | (a_m \phi_m(x) + z_m^* \phi_m^*(x)) (z_n \phi_n(y) + a^{\dagger}_n \phi_n^*(y)) | \Psi \rangle$$

$$= \langle \Psi | \zeta(x) | \Psi \rangle \langle \Psi | \zeta(y) | \Psi \rangle + \hbar \sum_n \phi_n(x) \phi_n^*(y)$$

$$= \langle \Psi | \zeta(x) | \Psi \rangle \langle \Psi | \zeta(y) | \Psi \rangle + \hbar \delta(x - y)$$
(149)

第二項は
$$aa^{\dagger} = \hbar + a^{\dagger}a$$
と書き換えるときに生じた項。 $(\hbar\delta(x-y) = \hbar\langle 0| \boldsymbol{\zeta}(x) \boldsymbol{\zeta}(y) | 0 \rangle$ と書ける。)

Coherent state $|\Psi\rangle$ は、古典的状態と呼ばれるにふさわしいすべての性質を持っている。

2.5 フェルミ面近傍での massless フェルミ場 第二量子化された <u>非相対論的な電子</u>の場の素励起を考察。 フェルミ面近傍の低エネルギー励起 \Rightarrow <u>相対論的なディラック場</u> 簡単のため空間的に1次元の系を考える (時間依存性を suppress して記す)。 $\Psi(x) =$ を第二量子化された非相対論的な電子の場 同時刻反交換関係:

$$\{\Psi(x),\Psi(y)\} = \{\Psi^{\dagger}(x),\Psi^{\dagger}(y)\} = 0$$
(150)

$$\left\{\Psi(x),\Psi^{\dagger}(y)\right\} = \delta(x-y) \tag{151}$$

ハミルトニアン

$$H = \int dx \, \Psi^{\dagger}(x) \frac{1}{2m} \left(\frac{1}{i} \partial_x\right)^2 \Psi(x) \qquad (152)$$

分散関係は非相対論的:

$$E = \frac{k^2}{2m} \tag{153}$$

電子はフェルミ粒子:

基底状態から詰めていくと、フェルミエネルギー E_F まで詰まる。 一次元では「フェルミ面」というより「フェルミ点」になっている。 この点で

$$E = E_F, \quad k = \pm k_F \quad \text{(left and right moving)} \quad (154)$$

 $k_F = \sqrt{2mE_F} > 0 \quad (155)$

<u>系の低エネルギーでの振る舞い</u>:フェルミ点近傍での運動量 $|\Delta k| << k_F$ を持った励起で支配される。

そのモードに対する分散関係:

$$E = \frac{k^2}{2m} = \frac{(k_F + \Delta k)^2}{2m} \simeq E_F + \frac{k_F}{m} \Delta k$$

= $E_F + v_F \Delta k$ (156)

 $\therefore \quad \Delta E = E - E_F \simeq v_F \Delta k \tag{157}$

 $v_F =$ フェルミ速度。 分散関係は線形。

 \Rightarrow これらの励起は massless fermion として振る舞うはず。

この領域での $\Psi(x)$ は次のように書くことができる:

$$\Psi(x) = \underbrace{\psi_L(x)}_{slow} \underbrace{e^{-ik_F x}}_{fast} + \underbrace{\psi_R(x)}_{slow} \underbrace{e^{ik_F x}}_{fast}$$
(158)

 $\psi_L(x)$ と $\psi_R(x)$ の部分は小さな運動量 $\sim \Delta k (\ll k_F)$ を持ち、ゆっくりと変化。

ハミルトニアンに代入。 低エネルギー励起のみに興味があるので、次の近似をする: $\bullet e^{\pm 2ik_Fx}$ を含む項は遙かに高いエネルギーの励起に対応するので落とす。 $\bullet \partial_x^2 \psi$ は $\partial_x \psi$ に比べて $\sim \Delta k/k_F$ または $\Delta k/m$ のオーダー小さいので 落とす。

結果:

$$H = iv_F \int dx \left(\psi_L^{\dagger} \partial_x \psi_L - \psi_R^{\dagger} \partial_x \psi_R \right) + \underbrace{E_F \hat{N}}_{fermi\ energy}$$
(159)
$$\hat{N} = \int dx \left(\psi_L^{\dagger} \psi_L + \psi_R^{\dagger} \psi_R \right) = \text{number operator}$$
(160)
低エネルギー有効ハミルトニアン:

$$H_{eff} = i v_F \int dx \left(\psi_L^{\dagger} \partial_x \psi_L - \psi_R^{\dagger} \partial_x \psi_R \right)$$
 (161)

1+1次元のmasssless fermion に対する相対論的ディラック作用 (with c=1)

$$S = \int dt dx \bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi = i \int dt dx \bar{\psi} (\gamma^{0} \partial_{t} + \gamma^{1} \partial_{x}) \psi$$
$$= i \int dt dx \psi^{\dagger} (\partial_{t} + \gamma_{5} \partial_{x}) \psi \qquad (162)$$

ここで
$$\psi = \begin{pmatrix} \psi_R \\ \psi_L \end{pmatrix}, \quad \bar{\psi} = \psi^{\dagger} \gamma^0$$
 (163)

$$\gamma^0 = \sigma_1, \quad \gamma^1 = -i\sigma_2$$
 (164)

$$\gamma_5 \equiv \gamma^0 \gamma^1 = \sigma_3 \tag{165}$$

ハミルトニアン:

$$\pi = i\psi^{\dagger} \qquad (166)$$

$$H_{D} = \int dx \pi \dot{\psi} - L = \int dx \left\{ i\psi^{\dagger} \dot{\psi} - (i\psi^{\dagger} \dot{\psi} + i\psi^{\dagger} \gamma_{5} \partial_{x} \psi) \right\}$$

$$= -i \int dx \psi^{\dagger} \gamma_{5} \partial_{x} \psi = i \int dx (\psi_{L}^{\dagger} \partial_{x} \psi_{L} - \psi_{R}^{\dagger} \partial_{x} \psi_{R}) \qquad (167)$$

 $v_F = c$ と同定すれば、我々が得たハミルトニアン H_{eff} と一致。

● 非相対論的な系において低エネルギーで相対論的な場が出現するもう ひとつの例。

Massless fermionが出現した理由:

• もとの系に存在するフェルミ的な並進対称性 $\Psi \rightarrow \Psi + \theta(\theta \mid d \neq \sigma)$ スマン的定数)が、 $E_F \hat{N}$ が固定されることにより自発的に破れた結果生ずる Nambu-Goldstone fermion。

3 相対論的な古典場

様々な対称性の中でも、ローレンツ対称性はとりわけ重要。

素粒子論や宇宙論における重要性のみならず、すでに見たように、物性論 においても相対論的な場が現れる場合がある。

この章の目的:

- Lorentz 群の表現を基にした相対論的な場の分類
- •相対論的な場の作用の構成

3.1 ローレンツ群とその表現

相対論的な場=ローレンツ変換に対して共変に変換する場

数学的には、ローレンツ群(ローレンツ代数)の表現を場の空間上で構成する問題。

3.1.1 群とそのリー代数: SU(2)とSL(2,C)の例

口 群SU(2):

$$U \in G = SU(2)$$
 (special unitary)
 $\Leftrightarrow \begin{cases} U = 複素2 \times 2 行列 \\ U^{\dagger}U = 1 & unitary, & det U = 1 & special \end{cases}$ (1)

そのような行列の集合は群をなす:

$$U_i \in SU(2) \implies U_1 U_2 \in SU(2)$$

 $U^{-1} = U^{\dagger}$ 逆の存在 $(U_1 U_2) U_3 = U_1 (U_2 U_3)$ associativity (2)

実際、

SU(2)の元の具体形

$$U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$\det U = 1 \quad \Rightarrow \quad ad - bc = 1 \tag{3}$$

$$U^{\dagger}U = 1 \implies |a|^2 + |c|^2 = |b|^2 + |d|^2 = 1$$
 (4)

$$\mathbf{0} = \mathbf{a}^* \mathbf{b} + \mathbf{c}^* \mathbf{d} \tag{5}$$

容易に解ける。 実条件の数: (3)から2個、(4)から2個、(5)から1個 \Rightarrow 5条件 \Rightarrow 8 - 5 = 3 実パラメーター

$$U = \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix}, \quad |a|^2 + |b|^2 = 1$$
 (6)

 $\Box su(2): SU(2)$ のLie代数:

単位元の無限小近傍では $U = e^{iX}$ と書ける。すなわち、

$$U = 1 + iX + \mathcal{O}(X^2) \tag{7}$$

• Unitary 性

$$U^{\dagger}U \simeq (1 - iX^{\dagger})(1 + iX) \simeq 1 + i(X - X^{\dagger}) = 1$$

$$\therefore \qquad X^{\dagger} = X \qquad X | \mathtt{tI} = - \land \exists \mathsf{T} \mathsf{I}$$
(8)

• $\det U = 1$ の条件:

次の公式が有用。対角化可能な行列 Y に対して

$$\det e^{Y} = e^{\mathsf{Tr}Y} \quad (9)$$

<u>証明</u>: 両辺とも相似変換に対して不変。 $\Rightarrow Y$ が対角行列の場合を考えれば十分。その固有値を y_i とすれば、

$$\det e^{Y} = \prod_{i} e^{y_{i}} = e^{\sum_{i} y_{i}} = e^{\operatorname{Tr} Y} \quad // \tag{10}$$

これを用いると

$$\det U = \det e^{iX} = e^{i\mathsf{Tr}X} = 1$$

$$\therefore \quad \mathsf{Tr}X = 0 \tag{11}$$

まとめると

$$e^{iX} \in SU(2) \quad \Leftrightarrow \quad X^{\dagger} = X \,, \quad \mathsf{Tr}X = \mathbf{0}$$
 (12)

Xの具体形:

(i) エルミート性
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = X^{\dagger} = \begin{pmatrix} a^* & c^* \\ b^* & d^* \end{pmatrix}$$

∴ $a = a^*, d = d^* \text{ real}, \quad c^* = b$ (13)

(*ii*) traceless
$$\operatorname{Tr} X = a + d = 0 \implies d = -a$$
 (14)

従って、

$$\boldsymbol{X} = \begin{pmatrix} \boldsymbol{a} & \boldsymbol{b} \\ \boldsymbol{b}^* & -\boldsymbol{a} \end{pmatrix}$$
(15)

Pauli行列による表示

$$\theta_{a}(a = 1 \sim 3) = 3 個の実パラメータ-$$

$$X = \frac{1}{2} \begin{pmatrix} \theta_{3} & \theta_{1} - i\theta_{2} \\ \theta_{1} + i\theta_{2} & -\theta_{3} \end{pmatrix} = \sum_{a} \theta_{a} s_{a}$$

$$s_{a} = \frac{1}{2} \sigma_{a}$$

$$\sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(17)

 s_a はtraceless エルミート行列の基底をなす。 また s_a は次の代数をなす:

$$[s_a, s_b] = i\epsilon_{abc}s_c$$
 (18)

これをSU(2)のLie代数と呼びsu(2)と書く。

演習 3.1 次の公式を導き、1の無限小近傍に限らず、 $U \in SU(2)$ の任意の元が $e^{iX}, X =$ traceless hermitianの形に書けることを示せ。

$$e^{i\sum_{a}\theta_{a}\sigma_{a}/2} = \cos\frac{\theta}{2} + i\hat{\theta}\cdot\vec{\sigma}\sin\frac{\theta}{2}$$
(19)
$$\vec{\theta}$$

$$\boldsymbol{\theta} \equiv |\vec{\theta}|, \quad \hat{\boldsymbol{\theta}} \equiv \frac{\boldsymbol{\theta}}{\boldsymbol{\theta}}$$
 (20)

 $\Box SL(2,C)$ とそのLie代数:

det $U = 1 \Rightarrow 2$ つの実条件 $\Rightarrow 8 - 2 = 6$ つの実パラメーター $\Leftrightarrow 3$ つの複素パラメーター SL(2,C)のLie代数

$$e^{iX} \in SL(2,C) \quad \Leftrightarrow \quad \operatorname{Tr} X = 0$$
 (22)

ゆえ、

$$X = \sum_{a=1}^{3} \phi_a s_a, \qquad s_a = \frac{1}{2} \sigma_a$$
(23)

$$\phi_a = 複素パラメータ-$$
(24)

- *sl*(2,*C*)の生成子は3個の行列 *s*_a. *su*(2)と同じ代数を満たす。
- 群SL(2,C)とSU(2)は同じ形だが、パラメーターが異なる

$$U = e^{iX}, \qquad X = c_a s_a, \quad c_a = \begin{cases} heta_a \ \gtrless \ d_a \ \gtrless \ for \ SU(2) \\ \phi_a \ \wr \And \ for \ SL(2, C) \end{cases}$$
 (25)

• 群SL(2,R)

$$U = e^X, \quad X = c_a s_a, \quad c_a =$$
 (26)

3.1.2 ローレンツ変換とその生成子

□ 座標ベクトル *x^µ* に対するローレンツ 変換:

時空の計量の convention¹

 $\eta_{\mu\nu} = \text{diag} (1, -1, -1, -1) \quad \text{``time-favored''}$ (27)

$$\mu, \nu = 0, 1, 2, 3$$
 (28)

座標ベクトル x^{μ} に対するローレンツ変換:

$$x^{\prime \mu} = \Lambda^{\mu}{}_{\nu}x^{\nu} \tag{29}$$

"長さの2乗" $x^\mu x_\mu = x^\mu x^
u \eta_{\mu
u} = (ct)^2 - ec x \cdot ec x$ を不変にする:

$$x^{\prime \mu} x^{\prime \nu} \eta_{\mu \nu} = \Lambda^{\mu}{}_{\rho} \Lambda^{\nu}{}_{\sigma} x^{\rho} x^{\sigma} \eta_{\mu \nu} = x^{\rho} x^{\sigma} \eta_{\rho \sigma}$$
(30)

従って

$$\Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma}\eta_{\mu\nu} = \eta_{\rho\sigma} \quad \Leftrightarrow \quad \Lambda^{T}\eta\Lambda = \eta \quad (31)$$

¹Time-favored convention は量子力学から拡張するのに自然。 Space-favored $\eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$ は重力理論に適す。

qft1-3-10

 $\Lambda = e^{\xi}$ と書くと、無限小変換 ξ に対して

$$\Lambda = e^{\xi} \simeq 1 + \xi \tag{32}$$

$$x^{\prime \mu} \simeq x^{\mu} + \xi^{\mu}{}_{\nu}x^{\nu} \tag{33}$$

(32)を(31)に入れると容易に

$$\boldsymbol{\xi}^T \boldsymbol{\eta} + \boldsymbol{\eta} \boldsymbol{\xi} = \boldsymbol{0} \quad \Leftrightarrow \quad (\boldsymbol{\eta} \boldsymbol{\xi})^T = -\boldsymbol{\eta} \boldsymbol{\xi} \tag{34}$$

 $\eta\xi$ は4 × 4の実反対称行列 \Rightarrow 6個の独立な自由度を持つ。

□ 無限小変換の生成子:

 $\eta\xi$ は6個の独立な反対称行列 $L_{\rho\sigma}$ の1次結合で書ける。 これを次のような純虚数のエルミート行列にとる:

$$(L_{\rho\sigma})_{\mu\nu} = i(\eta_{\rho\mu}\eta_{\sigma\nu} - \eta_{\sigma\mu}\eta_{\rho\nu})$$
(35)

あきらかに、 $L_{
ho\sigma}^T=-L_{
ho\sigma}$ が成り立つ。 $\eta\xi$ を 反対称なパラメーター $lpha^{
ho\sigma}$

を用いて $\eta \xi = \alpha^{\rho\sigma} L_{\rho\sigma}$ と展開すると、

$$(\eta\xi)_{\mu\nu} = \eta_{\mu\rho}\xi^{\rho}{}_{\nu} = \xi_{\mu\nu} = \alpha^{\rho\sigma}(L_{\rho\sigma})_{\mu\nu}$$
$$= i\alpha^{\rho\sigma}(\eta_{\rho\mu}\eta_{\sigma\nu} - \eta_{\sigma\mu}\eta_{\rho\nu}) = 2i\alpha_{\mu\nu}$$
$$\therefore \quad \alpha_{\mu\nu} = -\frac{i}{2}\xi_{\mu\nu}$$
(36)

従って、添え字を元の位置 ξ^{μ}_{ν} に戻したものは、次のように展開できる:

$$\xi^{\mu}{}_{\nu} = -\frac{i}{2}\xi^{\rho\sigma}(L_{\rho\sigma})^{\mu}{}_{\nu} \qquad (37)$$
$$(L_{\rho\sigma})^{\mu}{}_{\nu} = i(\delta^{\mu}_{\rho}\eta_{\sigma\nu} - \delta^{\mu}_{\sigma}\eta_{\rho\nu}) \qquad (38)$$

$$L_{
ho\sigma} = \text{Lorentz} 変換の生成子$$

□ 基本交換関係:

上記の生成子は交換関係のもとで次の基本的代数を形成する:

$$[L_{\mu\nu}, L_{\rho\sigma}] = \frac{1}{i} \left(\eta_{\mu\rho} L_{\nu\sigma} - \eta_{\nu\rho} L_{\mu\sigma} + \eta_{\nu\sigma} L_{\mu\rho} - \eta_{\mu\sigma} L_{\nu\rho} \right) \quad (39)$$

演習 3.2 (39)の定義を用いてこの代数を導け。

 $\Box L_{\mu
u}$ の分解:回転とブースト:

 $L_{\mu
u}$ は回転とブーストに分解できる (i = 1, 2, 3):

3 rotations
$$I_i \equiv \frac{1}{2} \epsilon_{ijk} L^{jk}$$
 (40)

3 boosts
$$K_i \equiv L_{i0}$$
 (41)

演習 3.3 $I_3 = L_{12}$ がz軸まわりの回転を生成することを次の計算をすることにより確かめよ。

$$\delta_{I_3} x^i = -i\theta(L_{12})^i{}_j x^j \tag{42}$$

演習 3.4 同様に、 $K_1 = L_{10}$ が1-方向のブーストを生成することを示せ。 $(x^0 \pm x^1$ がどのように変換されるかを見よ。)

演習 3.5 これらの生成子が次の代数を満たすことを示せ。

$$\begin{bmatrix} I_i, I_j \end{bmatrix} = i\epsilon_{ijk}I_k$$

$$\begin{bmatrix} I_i, K_j \end{bmatrix} = i\epsilon_{ijk}K_k \quad (K_i は空間3次元ベクトルを形成) \quad (44)$$

$$\begin{bmatrix} K_i, K_j \end{bmatrix} = -i\epsilon_{ijk}I_k \quad (45)$$

3.1.3 ローレンツ群の直積分解

Lorentz 群 SO(1,3)の性質を詳しく調べるため、これが二つの群の直積の 構造を持つことを示す。

生成子 $J_i^{(\pm)}$ を次のように定義²:

$$J_i^{(\pm)} \equiv \frac{1}{2} \left(I_i \mp i K_i \right) \tag{46}$$

 $I_i と K_i$ はどちらも純虚数: $\Rightarrow J_k^{(\pm)}$ は次の関係を満たす:

$$J_{k}^{(-)} = -J_{k}^{(+)*}$$
(47)

 $(43) \sim (45) \Rightarrow J_k^{(\pm)}$ は二つの独立な代数をなすことがチェックされる

$$\begin{bmatrix} J_i^{(\pm)}, J_j^{(\pm)} \end{bmatrix} = i\epsilon_{ijk}J_k^{(\pm)} \quad (48)$$
$$\begin{bmatrix} J^{(+)}_i, J^{(-)}_j \end{bmatrix} = 0 \quad (49)$$

2符号は九後氏の教科書に合うように定めてある。

qft1-3-15

各代数は*SU*(2)代数と同型。

どのような群を生成するかが重要。

もともとのローレンツ変換を $J_k^{(\pm)}$ で表す:

$$\frac{1}{2}\xi^{\rho\sigma}L_{\rho\sigma} = \xi^{i0}L_{i0} + \frac{1}{2}\xi^{ij}L_{ij} = \xi^{i0}K_i + \frac{1}{2}\xi^{ij}\epsilon_{ijk}I_k
= \left(\frac{1}{2}\xi^{ij}\epsilon_{ijk} + i\xi^{k0}\right)J^{(+)}_{k} + \left(\frac{1}{2}\xi^{ij}\epsilon_{ijk} - i\xi^{k0}\right)J^{(-)}_{k}
\equiv \theta_k J^{(+)}_{k} + \theta_k^* J^{(-)}_{k}$$
(50)

ここで

$$\theta_k \equiv \frac{1}{2} \xi^{ij} \epsilon_{ijk} + i \xi^{k0} = 3 \text{ complex parameters}$$
 (51)

さらに、 $J^{(-)}_{k} = -J^{(+)}_{k}^{*}$ を思い出すと、ローレンツ変換行列の指数は次の構造を持つことがわかる:

$$-\frac{i}{2}\xi^{\rho\sigma}L_{\rho\sigma} = -i\theta_k J^{(+)}{}_k - i\theta^*_k J^{(-)}{}_k$$
$$= (-i\theta_k J^{(+)}{}_k) + (-i\theta_k J^{(+)}{}_k)^*$$
(52)

qft1-3-16

これより、3+1次元のローレンツ群は次の直積構造を持つ:

 $SO(1,3)\,=\,SL(2,C)\otimes SL(2,C)^*$

(正しく6個の実パラメーターを持っている。) Lorentz群の構造と表現の問題は SL(2, C)の構造と表現の問題に帰着

3.1.4 *SL*(2,*C*)の基本的な表現

□ 群 G の行列表現:

群の演算の規則が*n*×*n*行列で実現:

 $\rho: U \in G \longrightarrow \rho(U) = n \times n$ 行列 $\rho(U_1 U_2) = \rho(U_1)\rho(U_2)$ 準同型写像 (53) (53) □ 最も基本的な表現 = 定義 (defining) 表現 :

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $\det M = ad - bc = 1$ (55)

$$u'_{\alpha} = M_{\alpha}^{\ \beta} u_{\beta} \qquad SL(2,C) \text{ spinor}$$
 (56)

基本的な不変量:

$$u_{\alpha}\epsilon^{\alpha\beta}v_{\beta} = SL(2,C)$$
不变, $\epsilon^{12} \equiv 1$ (57)

証明: 変換後

$$u'_{\alpha}\epsilon^{\alpha\beta}v'_{\beta} = \epsilon^{\alpha\beta}M_{\alpha}{}^{\alpha'}M_{\beta}{}^{\beta'}u_{\alpha'}v_{\beta'}$$
(58)

示すべきこと

 $\epsilon^{lphaeta}M_{lpha}{}^{lpha'}M_{eta}{}^{eta'} = \epsilon^{lpha'eta'} \Leftrightarrow \epsilon^{lphaeta}$ は不変なテンソル (59) 左辺は明らかに反対称、ゆえ $c\epsilon^{lpha'eta'}$ と書ける。c = 1を示したい。これに は lpha' = 1, eta' = 2と置く。すると

$$\epsilon^{\alpha\beta}M_{\alpha}{}^{1}M_{\beta}{}^{2} = \det M = 1 = c\epsilon^{12} = c \tag{60}$$

(59) を行列形で書くと

$$M^T \epsilon M = \epsilon \quad \Leftrightarrow \quad \epsilon M \epsilon^T = M^{T-1}$$
 (61)

● 群の行列表現には必ず次の二つの自然な表現が付随する。

口反傾(contragredient)表現 $M^{T^{-1}}$:

$$M_1 M_2 = M_3 \Rightarrow M_2^T M_1^T = M_3^T$$

 $\therefore M_1^{T^{-1}} M_2^{T^{-1}} = M_3^{T^{-1}}$ 表現をなす (62)

反傾表現の基底

定義表現の式 u' = Mu に左から ϵ を働かせて (61) を用いると

$$u' = Mu \quad \Rightarrow \quad (\epsilon u') = (\epsilon M \epsilon^T)(\epsilon u) = M^{T^{-1}}(\epsilon u)$$
 (63)

従って、反傾表現の基底は ϵu_{\circ} これを上付きスピナー u^{lpha} と定義:

$$\boldsymbol{u}^{\boldsymbol{\alpha}} \equiv \boldsymbol{\epsilon}^{\boldsymbol{\alpha}\boldsymbol{\beta}} \boldsymbol{u}_{\boldsymbol{\beta}} \tag{64}$$

逆に解く

$$\epsilon_{\gamma\alpha} u^{\alpha} = \underbrace{\epsilon_{\gamma\alpha}}_{-\delta_{\gamma}^{\beta}} u_{\beta} = -u_{\gamma}$$

$$\therefore \qquad u_{\alpha} = -\epsilon_{\alpha\beta} u^{\beta} = u^{\beta} \epsilon_{\beta\alpha}$$
(65)

上付きスピナーを用いた基本不変量の表式:

$$u_{\alpha}\epsilon^{\alpha\beta}v_{\beta} = u_{\alpha}v^{\alpha} = -u^{\beta}v_{\beta}$$
(66)

□ 複素共役表現: M*:

 $M_1M_2 = M_3 \Rightarrow M_1^*M_2^* = M_3^*$ 表現をなす (67) 複素共役スピナーの添え字は点を付けて表す。 ⇒ 点付きスピナー(dotted spinor)と呼ばれる。

$$\boldsymbol{u}_{\dot{\boldsymbol{\alpha}}} \equiv (\boldsymbol{u}_{\boldsymbol{\alpha}})^* \tag{68}$$

$$u'_{\dot{\alpha}} = M^{*\beta}_{\dot{\alpha}} u_{\dot{\beta}} \tag{69}$$

3.1.5 $J_k^{(\pm)}$ のテンソル積分解と変換行列T

Lorentz群の直積分解 $SO(1,3) = SL(2,C) \otimes SL(2,C)^*$ を生成子の形の上で直接実現したい。

 $J_k^{(\pm)}$ の具体的な形: 例えば、

綺麗なテンソル積の形になっていない。

テンソル積: ベクトルのテンソル積

 $(ec{x}\otimesec{y})_{im}\,\equiv\,x_iy_m$

行列AおよびBのテンソル積

$$(A \otimes B)(\vec{x} \otimes \vec{y}) \equiv (A\vec{x}) \otimes (B\vec{y})$$

$$\Rightarrow \quad (A \otimes B)_{im;jn} = A_{ij}B_{mn}$$
(70)

qft1-3-21

$$(\boldsymbol{A} \otimes \boldsymbol{B})(\boldsymbol{C} \otimes \boldsymbol{D}) = (\boldsymbol{A}\boldsymbol{C}) \otimes (\boldsymbol{B}\boldsymbol{D})$$
(71)

演習 3.6 以下を確かめよ。

$$rac{m{\sigma}_k}{2} \otimes 1 \,=\, rac{1}{2} \left(egin{array}{cc} (\sigma_k)_{11} 1 & (\sigma_k)_{12} 1 \ (\sigma_k)_{21} 1 & (\sigma_k)_{22} 1 \end{array}
ight) \,, \quad 1 \otimes rac{m{\sigma}_k}{2} \,=\, rac{1}{2} \left(egin{array}{cc} \sigma_k & 0 \ 0 & \sigma_k \end{array}
ight)$$

すなわち、 $A \otimes B$ はAの各成分に行列Bを付与したもの。

 $J^{(+)}_k$ と $J^{(-)}_k$ を直積の形にする相似変換Tを探したい。

$$T J^{(+)}{}_{i} T^{-1} = \mathcal{J}^{(+)}_{i} \equiv \frac{\Sigma^{(+)}_{i}}{2} \otimes 1 \qquad (72)$$
$$T J^{(-)}{}_{i} T^{-1} = \mathcal{J}^{(-)}_{k} \equiv 1 \otimes \frac{\Sigma^{(-)}_{i}}{2} \qquad (73)$$

 $rac{1}{2}\Sigma_i^{(\pm)}$ はSL(2,C)および $SL(2,C)^*$ 空間に働く2 imes 2行列 J_i^\pm と同型の交換関係を満たす。

$$T: SO(1,3) \Rightarrow SL(2,C) \otimes SL(2,C)^*$$
$$x^{\mu} \Rightarrow u_{\alpha} \otimes u_{\dot{\alpha}}$$
(74)

$$T: \; x^{\mu} \longrightarrow u_{lpha} u_{\dot{lpha}}$$

Tの添え字の構造は $T_{lpha\dot{lpha},\mu}$ それを4個の2 imes 2行列 T_{μ} と見なすと便利:

$$T_{\alpha\dot{\alpha},\mu} \equiv (T_{\mu})_{\alpha\dot{\alpha}}$$
 (75)

Tを決定する方程式

$$[(72), (73)] \times T \quad \Leftrightarrow \quad 2TJ_i^{(\pm)} = 2\mathcal{J}_i^{(\pm)}T \tag{76}$$

(+) セクターの具体形

$$2(T_{\mu})_{\alpha\dot{\alpha}}(J_{i}^{(+)})^{\mu}{}_{\nu} = 2(\mathcal{J}_{i}^{(+)})_{\alpha\dot{\alpha}}{}^{\beta\dot{\beta}}(T_{\nu})_{\beta\dot{\beta}} = \Sigma_{i}^{(+)}{}_{\alpha}{}^{\beta}\delta_{\dot{\alpha}}{}^{\dot{\beta}}(T_{\nu})_{\beta\dot{\beta}}$$
$$= \Sigma_{i}^{(+)}{}_{\alpha}{}^{\beta}(T_{\nu})_{\beta\dot{\alpha}} = (\Sigma_{i}^{(+)}T_{\nu})_{\alpha\dot{\alpha}}$$
(77)

qft1-3-23

(-) セクターも同様。合わせて、2×2の行列方程式として

$$2T_{\mu}J_{i}^{(+)\mu}{}_{\nu} = \Sigma_{i}^{(+)}T_{\nu} \qquad (78)$$
$$2T_{\mu}J_{i}^{(-)\mu}{}_{\nu} = T_{\nu}\Sigma_{i}^{(-)T} \qquad (79)$$

$$J_{i}^{(\pm)}$$
の定義(46)より
 $2J_{i}^{(\pm)\mu}{}_{\nu} = i\epsilon_{ijk}\eta^{\mu j}\delta^{k}_{\nu} \pm (\delta^{\mu}_{i}\eta_{\nu 0} - \delta^{\mu}_{0}\eta_{\nu i})$ (80)

これより、方程式(78)および(79)は

$$i\epsilon_{ijk}T^{j}\delta_{\nu}^{k} + T_{i}\eta_{\nu0} - T_{0}\eta_{\nu i} = \Sigma_{i}^{(+)}T_{\nu} \quad (81)$$

$$i\epsilon_{ijk}T^{j}\delta_{\nu}^{k} - T_{i}\eta_{\nu0} + T_{0}\eta_{\nu i} = T_{\nu}\Sigma_{i}^{(-)T} \quad (82)$$

これらの方程式を解くのは難しくない。 具体的に、*v*の値を入れてやると

$$egin{aligned} (+) ext{ case: } &
u &= 0 & T_i = \Sigma_i^{(+)} T_0 \ &
u &= i & T_0 = \Sigma_i^{(+)} T_i \ &
u &= k
eq i & i \epsilon_{ijk} T_j = \Sigma_i^{(+)} T_k \ &
(-) ext{ case: } &
u &= 0 & -T_i = T_0 \Sigma_i^{(-)^T} \ &
u &= i & -T_0 = T_i \Sigma_i^{(-)^T} \ &
u &= k
eq i & i \epsilon_{ijk} T_j = T_k \Sigma_i^{(-)^T} \end{aligned}$$

解: 自然な選択として $\Sigma_i^{(+)} = \sigma_i$ ととる。 \Rightarrow (+)方程式の解

$$T_0 = 1, \quad T_i = \sigma_i$$
 (83)

 \Rightarrow (-)の方程式より $\Sigma_i^{(-)}$ が決まる:

$$\Sigma_i^{(-)} = -\sigma_i^T = -\sigma_i^* \tag{84}$$

以後、慣習として $T_{\mu} \delta \sigma_{\mu} \delta \delta \delta$ 。

 $(\sigma_{\mu})_{\alpha\dot{\alpha}} = T_{\alpha\dot{\alpha},\mu} = (1,\vec{\sigma})$ (85)

$$T = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -i & 0 \\ 0 & 1 & i & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}, \qquad T^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & i & -i & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} = \frac{1}{2} T^{\dagger}$$
(86)

- Tの列は $1, \sigma_1, \sigma_2, \sigma_3$ の成分をベクトルとして並べたもの
- これらのベクトルは直交しており (複素) ノルムは $2 \Leftrightarrow T^{-1}T = \delta^{\mu}_{\nu}$.
- T^{-1} の行は、 $1, \sigma_1^*, \sigma_2^*, \sigma_3^*$ をベクトルとして並べたもの

$\Box T^{-1}$ の組み替え $\Rightarrow \bar{\sigma}^{\mu}$ の定義:

Tの添え字の構造: $T_{lpha\dot{eta},\mu}$ (ペア $(lpha\dot{eta})$ で「行」添え字を表す) 逆行列 T^{-1} の添え字の構造: $(T^{-1})^{\mu,lpha\dot{eta}}$ 2×2行列としての解釈:

$$T_{\alpha\dot{\alpha},\mu} \equiv (\sigma_{\mu})_{\alpha\dot{\alpha}} \qquad (87)$$
$$(T^{-1})^{\mu,\alpha\dot{\beta}} \equiv \frac{1}{2} (\bar{\sigma}^{\mu})^{\dot{\beta}\alpha} \qquad (88)$$

 $lpha \dot{eta}$ をペアでひとつの添え字と見なすのではなく、それぞれを行および列の添え字と見なすには、 $lpha \dot{eta}$ の添え字の順番を入れ替えるのが自然。例

$$(T^{-1})^{\mu,\alpha\dot{\beta}}T_{\alpha\dot{\beta},\mu} = \frac{1}{2} (\bar{\sigma}^{\mu})^{\dot{\beta}\alpha} (\sigma_{\mu})_{\alpha\dot{\beta}}$$
(89)

 $\bar{\sigma}^{\mu}$ の具体形

$$(\bar{\sigma}^{\mu})^{\dot{\alpha}\beta} = (1, \vec{\sigma})^{\dot{\alpha}\beta} \qquad (90)$$
$$(\bar{\sigma}_{\mu})^{\dot{\alpha}\beta} = (1, -\vec{\sigma})^{\dot{\alpha}\beta} \qquad (91)$$

qft1-3-27

$\Box \sigma_{\mu} \& \bar{\sigma}^{\mu} \mathcal{O} 性質:$ (i) $TT^{-1} = 1 \& \mathcal{U}$ $(\sigma_{\mu})_{\alpha\dot{\beta}} (\bar{\sigma}^{\mu})^{\dot{\gamma}\delta} = 2\delta^{\delta}_{\alpha} \delta^{\dot{\gamma}}_{\dot{\beta}}$ (92) (ii) $T^{-1}T = 1 \& \mathcal{U}$ $\frac{1}{2} \operatorname{Tr}(\bar{\sigma}^{\mu}\sigma_{\nu}) = \delta^{\mu}_{\nu}$ (93)

(*iii*) 基本的な bilinear 恒等式:

$$\sigma_{\mu}\bar{\sigma}_{\nu} + \sigma_{\nu}\bar{\sigma}_{\mu} = 2\eta_{\mu\nu} \tag{94}$$

$$\bar{\sigma}_{\mu}\sigma_{\nu} + \bar{\sigma}_{\nu}\sigma_{\mu} = 2\eta_{\mu\nu} \tag{95}$$

これらは次の表示より簡単に示される:

$$\sigma_{\mu} = \eta_{0\mu} - \eta_{\mu i} \sigma_i, \qquad \bar{\sigma}_{\nu} = \eta_{0\nu} + \eta_{\nu j} \sigma_j \tag{96}$$

(iv) $\sigma_{\mu} \ge \overline{\sigma}_{\mu}$ の関係 Pauli行列の基本関係式

$$\epsilon \sigma_i \epsilon^T = -\sigma_i^*, \quad \sigma_i^T = \sigma_i^*$$
 (97)

これより、

$$\epsilon \sigma^T_{\mu} \epsilon^T = \epsilon (1, \vec{\sigma}^T) \epsilon^T = (1, -\vec{\sigma}) = \bar{\sigma}_{\mu}$$
 (98)

3.1.6 SO(1,3)と $SL(2,C)\otimes SL(2,C)^*$ の具体的な関係 x^μ のローレンツ変換

$$\boldsymbol{x}' = \boldsymbol{\Lambda} \boldsymbol{x} = \boldsymbol{e}^{-i\theta_k \boldsymbol{J}^{(+)}_k} \, \boldsymbol{e}^{-i\theta_k^* \boldsymbol{J}^{(-)}_k} \boldsymbol{x} \tag{99}$$

 $SL(2,C) \otimes SL(2,C)^*$ の形に直すために左からTを作用:

$$Tx' = Te^{-i\theta_k J^{(+)}_k} T^{-1} Te^{-i\theta_k^* J^{(-)}_k} T^{-1} Tx$$

= $e^{-i\theta_k \mathcal{J}_k^{(+)}} e^{-i\theta_k^* \mathcal{J}_k^{(-)}} Tx$
= $(M \otimes M^*) Tx$ (100)

$$M \equiv e^{-i\theta_k \sigma_k/2} \in SL(2, C)$$
(101)

$$M^* = e^{i\theta_k^* \sigma_k^*/2} \in SL(2, C)^*$$
 (102)

 σ_{ν} 行列を用いると、(100)は次のように書ける:

左辺 =
$$(Tx')_{\alpha\dot{\alpha}} = (\sigma_{\mu})_{\alpha\dot{\alpha}} x'^{\mu}$$

右辺 = $M_{\alpha}^{\ \beta} M_{\dot{\alpha}}^{*\dot{\beta}} (\sigma_{\nu})_{\beta\dot{\beta}} x^{\nu} = (M\sigma_{\nu}M^{\dagger})_{\alpha\dot{\alpha}} x^{\nu}$ (103)

• SO(1,3)と $SL(2,C)\otimes SL(2,C)^*$ の関係のまとめ

$$\sigma_{\mu} x^{\prime \mu} = M \sigma_{\nu} x^{\nu} M^{\dagger}$$
(104)

$$\sigma_{\mu} \Lambda^{\mu}{}_{\nu} = M \sigma_{\nu} M^{\dagger}$$
(105)

$$\Lambda = e^{-i\theta_k J^{(+)}{}_k} e^{-i\theta_k^* J^{(-)}{}_k}$$
(106)

$$M = e^{-i\theta_k \sigma_k/2} \in SL(2, C)$$
(107)

3.1.7 *SL*(2,*C*)の行列表現

SL(2,C)の<u>代数</u>はSU(2)の代数と同型 $\Rightarrow SL(2,C)$ の表現論 $\simeq (スピン)$ 角運動量の理論

$u_{lpha} = SL(2, C)$ の基本表現の基底=スピン1/2のスピナー 全ての表現の building block

SL(2,C) 変換

$$u'_{\alpha} = M_{\alpha}{}^{\beta}u_{\beta}, \qquad M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad ad - bc = 1$$
 (108)
 $u'_{1} = au_{1} + bu_{2}$
 $u'_{2} = cu_{1} + du_{2}$

生成子 $\mathcal{J}_3 = rac{1}{2}\sigma_3$ に対応する無限小変換に対して

$$\begin{pmatrix} u_1' \\ u_2' \end{pmatrix} = (1 + \theta \mathcal{J}_3) \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

$$\therefore \qquad u_1' = \left(1 + \frac{1}{2}\theta\right) u_1, \qquad j_3 = \frac{1}{2} \qquad (109)$$

$$u_2' = \left(1 - \frac{1}{2}\theta\right) u_2, \qquad j_3 = -\frac{1}{2} \qquad (110)$$

n+1次元表現

 $u_1 \ge u_2$ を用いて作られる次数nのn + 1個の斉次式の集合を考える:

 $\zeta_k \equiv u_1^{n-k} u_2^k, \quad k=0,1,2,\ldots,n= ext{integer}$ (111)SL(2,C)変換に対して

$$\begin{aligned} \zeta'_{k} &= u'_{1}^{n-k} u'_{2}^{k} = (Mu)_{1}^{n-k} (Mu)_{2}^{k} \\ &= (au_{1} + bu_{2})^{n-k} (cu_{1} + du_{2})^{k} \\ &\equiv \mathcal{D}_{kl}(M) \zeta_{l} \end{aligned} \tag{112}$$

n+1個の ζ_k は(n+1)次元の行列 $\mathcal{D}(M)$ によって変換される。

演習 3.7 $\mathcal{D}(M'M) = \mathcal{D}(M')\mathcal{D}(M)$ が成り立つ、すなわち、 $\mathcal{D}(M)$ はSL(2,C)のn+1次元表現を与えることを示せ。

解:

$$\mathcal{D}(M')_{kl}\mathcal{D}(M)_{lm}\zeta_{m}$$

$$= \mathcal{D}(M')_{kl}(au_{1} + bu_{2})^{n-l}(cu_{1} + du_{2})^{l}$$

$$= (a'(au_{1} + bu_{2}) + b'(cu_{1} + du_{2}))^{n-k}(c'(au_{1} + bu_{2}) + d'(cu_{1} + du_{2}))^{k}$$

$$= ((a'a + b'c)u_{1} + (a'b + b'd)u_{2})^{n-k} + ((c'a + d'c)u_{1} + (c'b + d'd)u_{2})^{k}$$

$$= ((M'M)_{11}u_{1} + (M'M)_{12}u_{2})^{n-k} + ((M'M)_{21}u_{1} + (M'M)_{22}u_{2})^{k}$$

$$= \mathcal{D}(M'M)_{kl}\zeta_{l}$$
(113)

表現のスピン:最も高いスピンを持つ状態は $\zeta_0 = u_1^n$ 。 $1 + heta \mathcal{J}_3$ 変換に対して

$$\zeta_0' = (u_1')^n = \left(1 + \frac{1}{2}\theta\right)^n u_1^n \simeq \left(1 + \frac{n}{2}\theta\right)\zeta_0 \tag{114}$$

従って スピンj = n/2。表現の次元 n + 1 = 2j + 1。 以下この(2j + 1)次元表現を $\mathcal{D}^{j}(M)$ と記す。
□ 例:

• $\mathcal{D}^{0}(M) = 1$. 自明な1次元表現

• $\mathcal{D}^{1/2}(M) = M$. 基本表現そのもの

Clebsh-Gordan分解:

角運動量の場合と同様に、次のCG分解が成り立つ:

$$\mathcal{D}^{j_1} \otimes \mathcal{D}^{j_2} = \mathcal{D}^{j_1+j_2} \oplus \mathcal{D}^{j_1+j_2-1} \oplus \cdots \oplus \mathcal{D}^{|j_1-j_2|}$$
(115)

以下で頻繁に用いる基本的な分解

$$\mathcal{D}^{1/2} \otimes \mathcal{D}^{1/2} = \mathcal{D}^1 \oplus \mathcal{D}^0 \tag{116}$$

3.1.8 $SL(2,C) \times SL(2,C)^*$ の表現

全く同様に、 $SL(2,C) \times SL(2,C)^*$ の有限次元表現を作ることができる。 基本的な基底ベクトルと表現行列:

$$\zeta_{kk'} = (u_1^{2j-k} u_2^k) (u_1^{2j'-k'} u_{\dot{2}}^{k'})$$
(117)

$$0 \le k \le 2j$$
, $0 \le k' \le 2j'$ (118)

$$\zeta'_{kk'} = \mathcal{D}^{jj'}(M, M^*)_{kk';ll'}\zeta_{ll'}$$
(119)

- $ullet \, \mathcal{D}^{00}(M,M^*) = 1$
- $ullet \, \mathcal{D}^{rac{1}{2}0}(M,M^*) = M$
- $ullet \mathcal{D}^{0rac{1}{2}}(M,M^*)=M^*$
- $ullet \mathcal{D}^{rac{1}{2}rac{1}{2}}(M,M^*) = M\otimes M^*$

Lorentz ベクトルの変換 (cf (100))

3.1.9 ローレンツベクトルのスピナー表示

□ 基本関係式:

 $(\sigma_{\mu})_{lpha\dot{eta}}$ の本質:

SO(3,1) ベクトル \Longleftrightarrow $SL(2,C) imes SL(2,C)^*$ の $\mathcal{D}^{rac{11}{22}}$ 表現

 $V_{\alpha\dot{eta}} \equiv (\sigma_{\mu})_{\alpha\dot{eta}} V^{\mu}$ (120)

逆の関係: これを $(ar{\sigma}^{\mu})^{\dot{eta}lpha}$ と縮約:

$$egin{aligned} V_{lpha\dot{eta}}(ar{\sigma}^{\mu})^{\dot{eta}lpha} &= (\sigma_{
u})_{lpha\dot{eta}}(ar{\sigma}^{\mu})^{\dot{eta}lpha}V^{
u} = ext{Tr}(\sigma_{
u}ar{\sigma}^{\mu})V^{
u} = 2V^{\mu} \ & \Downarrow \end{aligned}$$

$$V^{\mu} = rac{1}{2} \operatorname{Tr}(V \bar{\sigma}^{\mu})$$
 (121)

ロ スカラー積 $V^{\mu}U_{\mu}$ のスピナー表現: 下付 bispinor から上付き bispinor を定義:

これと $V_{lpha\dot{eta}}$ を縮約 \Rightarrow 不変量

$$\begin{aligned} \boldsymbol{V}_{\boldsymbol{\alpha}\boldsymbol{\dot{\beta}}} \boldsymbol{U}^{\boldsymbol{\alpha}\boldsymbol{\dot{\beta}}} &= (\boldsymbol{\sigma}_{\mu})_{\boldsymbol{\alpha}\boldsymbol{\dot{\beta}}} (\bar{\boldsymbol{\sigma}}^{\nu})^{\boldsymbol{\dot{\beta}}\boldsymbol{\alpha}} \boldsymbol{V}^{\mu} \boldsymbol{U}_{\nu} \\ &= \operatorname{Tr}(\boldsymbol{\sigma}_{\mu} \bar{\boldsymbol{\sigma}}^{\nu}) \boldsymbol{V}^{\mu} \boldsymbol{U}_{\nu} = \mathbf{2} \boldsymbol{V}^{\mu} \boldsymbol{U}_{\mu} \end{aligned} \tag{123}$$

□ 微分演算子のスピナー表現:

微分 ∂_{μ} もLorentz ベクトル \Rightarrow bi-spinor で表せる

$$\partial_{\alpha\dot{eta}} = (\sigma_{\mu})_{\alpha\dot{eta}}\partial^{\mu} = T_{\alpha\dot{eta},\mu}\partial^{\mu} \ (124)$$

具体形:

$$\begin{pmatrix} \partial_{11} \\ \partial_{12} \\ \partial_{21} \\ \partial_{22} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 \ 0 \ 0 \ 1 \\ 0 \ 1 \ -i \ 0 \\ 0 \ 1 \ i \ 0 \\ 1 \ 0 \ 0 \ -1 \end{pmatrix}}_{T} \begin{pmatrix} \partial_{0} \\ -\partial_{1} \\ -\partial_{2} \\ -\partial_{3} \end{pmatrix} = \begin{pmatrix} \partial_{0} - \partial_{3} \\ -\partial_{1} + i\partial_{2} \\ -\partial_{1} - i\partial_{2} \\ \partial_{0} + \partial_{3} \end{pmatrix}$$

次の公式も有用:

$$\begin{aligned}
\partial_{\alpha\dot{\beta}}\partial^{\gamma\dot{\beta}} &= (\sigma^{\mu})_{\alpha\dot{\beta}}(\bar{\sigma}^{\nu})^{\dot{\beta}\gamma}\partial_{\mu}\partial_{\nu} \\
&= \frac{1}{2}(\sigma^{\mu}\bar{\sigma}^{\nu} + \sigma^{\nu}\bar{\sigma}^{\mu})_{\alpha}{}^{\gamma}\partial_{\mu}\partial_{\nu} \\
&= \delta^{\gamma}_{\alpha}\partial^{\mu}\partial_{\mu} = \delta^{\gamma}_{\alpha}\partial^{2}
\end{aligned} \tag{125}$$

$$\begin{aligned}
\partial_{\alpha\dot{\beta}}\partial^{\alpha\dot{\gamma}} &= (\sigma^{\mu})_{\alpha\dot{\beta}}(\bar{\sigma}^{\nu})^{\dot{\gamma}\alpha}\partial_{\mu}\partial_{\nu} \\
&= \frac{1}{2}(\bar{\sigma}^{\nu}\sigma^{\mu} + \bar{\sigma}^{\mu}\sigma^{\nu})^{\dot{\gamma}}{}_{\dot{\beta}}\partial_{\mu}\partial_{\nu} \\
&= \delta^{\dot{\gamma}}_{\dot{\beta}}\partial_{\mu}\partial^{\mu} = \partial^{\dot{\gamma}}_{\dot{\beta}}\partial^{2}
\end{aligned} \tag{126}$$

ここで $\dot{\beta}$ と $\dot{\gamma}$ を縮約すると

$$\partial_{\alpha\dot{\beta}}\partial^{\alpha\dot{\beta}} = 2\partial^2$$
 (127)

3.1.10 2階のローレンツテンソルのスピナー表現 $T^{\mu\nu} = -$ 般の二階のテンソル。 各ベクトル添え字をスピナーに変換:

$$T_{\alpha\dot{\beta};\gamma\dot{\delta}} = (\sigma_{\mu})_{\alpha\dot{\beta}}(\sigma_{\nu})_{\gamma\dot{\delta}}T^{\mu\nu}$$
(128)

左辺 $\in \mathcal{D}^{\frac{1}{2}\frac{1}{2}} \otimes \mathcal{D}^{\frac{1}{2}\frac{1}{2}}$ 。 SL(2,C)およびSL(2,C)*に対して、Clebsh-Gordan分解。 $\frac{1}{2} \otimes \frac{1}{2} = 1_s \oplus 0_a$, a =antisymmetric, s = symmetric 従って、全体の分解は

これは次のテンソルの分解に対応:

$$T^{\mu\nu} = \left(T^{(\mu\nu)} - \frac{1}{4}\eta^{\mu\nu}T^{\rho}{}_{\rho}\right) + T^{[\mu\nu]} + \frac{1}{4}\eta^{\mu\nu}T^{\rho}{}_{\rho}$$

= (10 - 1) \oplus 6 \oplus 1 (130)

ここで

$$T^{(\mu\nu)} = \frac{1}{2}(T^{\mu\nu} + T^{\nu\mu}), \qquad T^{[\mu\nu]} = \frac{1}{2}(T^{\mu\nu} - T^{\nu\mu})$$
(131)

以下で、特に

$$T^{[\mu\nu]} = T_{SD}^{[\mu\nu]} + T_{ASD}^{[\mu\nu]}$$

$$\uparrow \qquad \uparrow$$

$$\mathcal{D}^{10}(3) \quad \mathcal{D}^{01}(3) \qquad (132)$$

をを説明。

ロ (Anti-)Self-Dualな反対称テンソル: $F^{\mu
u} = 反対称テンソル:$ その双対(dual) $ilde{F}_{\mu
u}$:

$$\tilde{F}_{\mu\nu} \equiv \frac{i}{2} \epsilon_{\mu\nu\rho\sigma} F^{\rho\sigma}$$
(133)

ここで
$$\epsilon_{0123} \equiv 1$$
, $\epsilon^{0123} = -1$ (134)

*i*の因子を付けておくと次の関係が成り立つ:

$$\tilde{\tilde{F}}_{\mu\nu} = F_{\mu\nu} \tag{135}$$

証明:

$$\tilde{\tilde{F}}_{\mu\nu} = \frac{i}{2} \epsilon_{\mu\nu\rho\sigma} \tilde{F}^{\rho\sigma} = \frac{i}{2} \epsilon_{\mu\nu\rho\sigma} \frac{i}{2} \epsilon^{\rho\sigma\lambda\tau} F_{\lambda\tau}
= -\frac{1}{4} \epsilon_{\mu\nu\rho\sigma} \epsilon^{\lambda\tau\rho\sigma} F_{\lambda\tau} = \frac{1}{2} (\delta^{\lambda}_{\mu} \delta^{\tau}_{\nu} - \delta^{\tau}_{\mu} \delta^{\lambda}_{\nu}) F_{\lambda\tau} = F_{\mu\nu}$$
(136)

Self-dual (SD) および anti-self-dual(ASD) テンソルの定義:

(SD)
$$\tilde{F}_{\mu\nu}^{(+)} = F_{\mu\nu}^{(+)}$$
 (137)
(ASD) $\tilde{F}_{\mu\nu}^{(-)} = -F_{\mu\nu}^{(-)}$ (138)

• 任意の反対称テンソルは、常にSDとASD部分に分解できる:

$$F_{\mu\nu} = F_{\mu\nu}^{(+)} + F_{\mu\nu}^{(-)}$$
(139)

$$F_{\mu\nu}^{(+)} = \frac{1}{2} (F_{\mu\nu} + \tilde{F}_{\mu\nu}), \qquad F_{\mu\nu}^{(-)} = \frac{1}{2} (F_{\mu\nu} - \tilde{F}_{\mu\nu}) \qquad (140)$$

 $F^{(+)}_{\mu
u}$ と $F^{(-)}_{\mu
u}$ は互いに複素共役であることに注意:

$$F_{\mu\nu}^{(-)} = F_{\mu\nu}^{(+)*}$$
 (141)

(A)SD テンソルのローレンツ変換性

正規ローレンツ変換(*i.e.* det $\Lambda = +1$)のもとで、(A)SDテンソルは(A)SD テンソルに写像される

演習 3.8 $F^{\mu\nu}$ がSDならば、それを正規ローレンツ変換したもの $F'^{\mu\nu} = \Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma}F^{\rho\sigma}$ もまたSDであることを示せ。 解:

$$\tilde{F}'_{\mu\nu} = \frac{i}{2} \epsilon_{\mu\nu\rho\sigma} F'^{\rho\sigma}
= \frac{i}{2} \epsilon_{\mu\nu\rho\sigma} \Lambda^{\rho}{}_{\tau} \Lambda^{\sigma}{}_{\lambda} F^{\tau\lambda}
= \frac{i}{2} \epsilon_{\mu\nu\rho\sigma} \Lambda^{\rho}{}_{\tau} \Lambda^{\sigma}{}_{\lambda} \frac{i}{2} \epsilon^{\tau\lambda\alpha\beta} F_{\alpha\beta}$$
(142)

逆行列 $\Lambda^{\mu}{}_{\nu}$ は次の関係式から求まる:

$$\Lambda_{\nu}{}^{\rho}\Lambda^{\nu}{}_{\sigma} = \delta^{\rho}_{\sigma} \tag{143}$$

これより、

$$F_{\alpha\beta} = \Lambda^{\gamma}{}_{\alpha}\Lambda^{\delta}{}_{\beta}F'_{\gamma\delta}$$
(144)

qft1-3-44

$$\epsilon^{0123} = -1 \in \pi$$
いると、

$$\tilde{F'}_{\mu\nu} = -\frac{1}{4} \epsilon_{\mu\nu\rho\sigma} \Lambda^{\rho}{}_{\tau} \Lambda^{\sigma}{}_{\lambda} \epsilon^{\tau\lambda\alpha\beta} \Lambda^{\gamma}{}_{\alpha} \Lambda^{\delta}{}_{\beta} F'_{\gamma\delta}$$

$$= -\frac{1}{4} \epsilon_{\mu\nu\rho\sigma} \epsilon^{\rho\sigma\gamma\delta} F'_{\gamma\delta} \det \Lambda$$

$$= \det \Lambda F'_{\mu\nu} = F'_{\mu\nu} //$$
(145)

ロ (A)SD テンソルのスピナー表示:
SDテンソル
$$\in \mathcal{D}^{10}$$
:すなわち $T_{(\alpha\gamma)} = \frac{1}{2}(T_{\alpha\gamma} + T_{\gamma\alpha})$ (146)

ここで

$$T_{\alpha\gamma} \equiv \epsilon^{\dot{\beta}\dot{\delta}}T_{\alpha\dot{\beta};\gamma\dot{\delta}} = \epsilon^{\dot{\beta}\dot{\delta}}(\sigma_{\mu})_{\alpha\dot{\beta}}(\sigma_{\nu})_{\gamma\dot{\delta}}T^{\mu\nu}$$
$$= (\sigma_{\mu}\epsilon\sigma_{\nu}^{T})_{\alpha\gamma}T^{\mu\nu} = (\sigma_{\mu}\bar{\sigma}_{\nu}\epsilon)_{\alpha\gamma}T^{\mu\nu} \qquad (147)$$

 $\sigma_\mu ar \sigma_
u \epsilon$ の対称性を調べる:

$$(\boldsymbol{\sigma}_{\mu} \bar{\boldsymbol{\sigma}}_{\nu} \boldsymbol{\epsilon})^{T} = \boldsymbol{\epsilon}^{T} \bar{\boldsymbol{\sigma}}_{\nu}^{T} \boldsymbol{\sigma}_{\mu}^{T} = (\boldsymbol{\epsilon}^{T} \bar{\boldsymbol{\sigma}}_{\nu} \boldsymbol{\epsilon})^{T} (\boldsymbol{\epsilon}^{T} \boldsymbol{\sigma}_{\mu}^{T} \boldsymbol{\epsilon}) \boldsymbol{\epsilon}^{T}$$
$$= \boldsymbol{\sigma}_{\nu} \bar{\boldsymbol{\sigma}}_{\mu} \boldsymbol{\epsilon}^{T} = -\boldsymbol{\sigma}_{\nu} \bar{\boldsymbol{\sigma}}_{\mu} \boldsymbol{\epsilon}$$
(148)

これを使うと

$$T_{(\alpha\gamma)} = \frac{1}{2} \left[(\sigma_{\mu} \bar{\sigma}_{\nu} - \sigma_{\nu} \bar{\sigma}_{\mu}) \epsilon \right]_{\alpha\gamma} T^{\mu\nu} = \frac{1}{2} \left[(\sigma_{\mu} \bar{\sigma}_{\nu} - \sigma_{\nu} \bar{\sigma}_{\mu}) \epsilon \right]_{\alpha\gamma} T^{[\mu\nu]} = -i (\sigma_{\mu\nu} \epsilon)_{\alpha\gamma} T^{[\mu\nu]}$$
(149)

ここで

$$(\sigma_{\mu\nu})_{\alpha}{}^{\beta} \equiv rac{i}{2}(\sigma_{\mu}\bar{\sigma}_{\nu}-\sigma_{\nu}\bar{\sigma}_{\mu})_{\alpha}{}^{\beta}$$
 (150)

以前の考察より、 $\sigma_{\mu\nu}$ はSDテンソルであるはず。すなわち

$$\sigma_{\mu\nu} = \frac{i}{2} \epsilon_{\mu\nu\rho\sigma} \sigma^{\rho\sigma}$$
(151)

演習 3.9 これを $\sigma^{\mu}, \bar{\sigma}^{\mu}$ の具体的な形を用いて示せ。

これを用いると、

$$T_{(\alpha\gamma)} = -i\frac{i}{2}\epsilon_{\mu\nu\rho\sigma}(\sigma^{\rho\sigma}\epsilon)_{\alpha\gamma}T^{[\mu\nu]}$$

= $-i(\sigma^{\rho\sigma}\epsilon)_{\alpha\gamma}\tilde{T}_{[\rho\sigma]} = -i(\sigma_{\rho\sigma}\epsilon)_{\alpha\gamma}\tilde{T}^{[\rho\sigma]}$ (152)

従って(149)と比較すると

$$T_{(\alpha\beta)} = -i(\sigma_{\mu\nu}\epsilon)_{\alpha\beta}T^{(+)\mu\nu}$$
(153)

ASD テンソル $\in \mathcal{D}^{01}$ も同様:

$$(\bar{\sigma}_{\mu\nu})^{\dot{\alpha}}{}_{\dot{\beta}} \equiv \frac{i}{2} (\bar{\sigma}_{\mu}\sigma_{\nu} - \bar{\sigma}_{\nu}\sigma_{\mu})^{\dot{\alpha}}{}_{\dot{\beta}} \qquad (154)$$
$$\tilde{\bar{\sigma}}_{\mu\nu} = -\bar{\sigma}_{\mu\nu} \qquad (155)$$
$$T_{(\dot{\alpha}\dot{\beta})} = \epsilon^{\alpha\gamma}T_{\alpha\dot{\beta};\gamma\dot{\delta}} = i(\epsilon^{T}\bar{\sigma}_{\mu\nu})_{\dot{\alpha}\dot{\beta}}T^{(-)\mu\nu} \qquad (156)$$

演習 3.10 これらの関係式を証明せよ。

3.2 相対論的自由場の方程式の構築

ローレンツ群とその表現 ⇒ **ローレンツ共変な場の方程式**

 $SL(2,C) imes SL(2,C)^*$ の分解を最大限利用

- 3.2.1 Klein-Gordon(scalar)場の方程式
- スカラー場 $\phi \in \mathcal{D}^{00}$ 共変性を満たす最も簡単な微分方程式

$$\partial_{\alpha\dot{\beta}}\phi = 0 \qquad (= (\sigma^{\mu})_{\alpha\dot{\beta}}\partial_{\mu}\phi)$$
 (157)

しかし、 $\partial_{\mu}\phi = 0 \rightarrow \phi = \text{constant:}$ 自明な配位のみゆえ不可。

• 非自明な方程式を得るには、不変な微分 $\partial_{lpha\dot{eta}}\partial^{lpha\dot{eta}}=2\partial^2$ を用いる必要あり。

 ϕ に対して一次に限れば、最も一般的な方程式は、 $\frac{1}{2}\partial_{\alpha\dot{\beta}}\partial^{\alpha\dot{\beta}}\phi = \partial^{2}\phi = -m^{2}\phi$ $\therefore \qquad (\partial^{2} + m^{2})\phi = 0 \quad \text{Klein-Gordon 方程式} \qquad (158)$ フーリエ変換 => 相対論的な基本分散関係

$$E^2 = \vec{p}^2 + m^2$$
 (159)

この基本分散関係はすべての相対論的な自由場に対して要請される。

3.2.2 Weyl 方程式

Weyl 場 $\xi_{\alpha} \in \mathcal{D}^{\frac{1}{2}0}$ 昌士 節畄 な 廿 亦 微 八 亡 刊

最も簡単な共変微分方程式:

$$\partial^{\alpha\dot{\beta}}\xi_{\alpha} = (\bar{\sigma}^{\mu})^{\dot{\beta}\alpha}\partial_{\mu}\xi_{\alpha} = 0$$
 Weyl方程式 (160)
 $\bar{\sigma}^{\mu} = (1, \vec{\sigma})$ (µは上付き)

- これは、スカラー場の場合と異なり、非自明な内容を持つ。
- $m^2 = 0 \, \text{OKG} \, \hat{r}$ 程式を満たす:

$$0 = \partial_{\gamma\dot{\beta}}\partial^{\alpha\dot{\beta}}\xi_{\alpha} = \delta^{\alpha}_{\gamma}\partial^{2}\xi_{\alpha} = \partial^{2}\xi_{\gamma}$$
(161)

具体形と物理的内容

 $(\partial_t + \sigma_i \partial_i) \xi = 0 \quad \Leftrightarrow \quad E - \vec{p} \cdot \vec{\sigma} = 0$ (162)

Helicity 1を持つ massless フェルミオンを表す:

helicity
$$\equiv h = \frac{\vec{p} \cdot \vec{\sigma}}{p} = 1$$
 (163)

反Weyl 場 $\eta^{\dot{eta}} \in \mathcal{D}^{0rac{1}{2}}$

$$\partial_{\alpha\dot{\beta}}\eta^{\dot{\beta}} = (\sigma^{\mu})^{\alpha\dot{\beta}}\partial_{\mu}\eta^{\dot{\beta}} = 0$$
(164)

$$(\partial_t - \sigma_i \partial_i) \eta^{\cdot} = 0 \qquad \sigma^{\mu} = (1, -\vec{\sigma})$$
 (165)

$$h = -1 \tag{166}$$

Helicity -1を持つ massless のフェルミオンを表す。

3.2.3 Dirac 方程式

Weyl方程式はmasslessのfermionしか記述できない。 Massiveなfermionに対しては、 $\xi_{\alpha} \in \mathcal{D}^{\frac{1}{2}0}$ と $\eta^{\dot{\beta}} \in \mathcal{D}^{0\frac{1}{2}}$ の両方が必要。 これらを用いると、次の閉じた方程式系が書ける:

$$\partial^{\alpha\dot{\beta}}\xi_{\alpha} = a\eta^{\dot{\beta}} \qquad \left(\mathcal{D}^{\frac{1}{2}\frac{1}{2}} \otimes \mathcal{D}^{\frac{1}{2}0} = \mathcal{D}^{\frac{1}{2}} \oplus \mathcal{D}^{0\frac{1}{2}}\right) \qquad (167)$$
$$\partial_{\alpha\dot{\beta}}\eta^{\dot{\beta}} = b\xi_{\alpha} \qquad \left(\mathcal{D}^{\frac{1}{2}\frac{1}{2}} \otimes \mathcal{D}^{0\frac{1}{2}} = \mathcal{D}^{\frac{1}{2}1} \oplus \mathcal{D}^{\frac{1}{2}0}\right) \qquad (168)$$

a,bは質量の次元を持つ。 各々の成分がKG方程式を満たすことを要求 $\partial_{\gamma\doteta}$ を最初の方程式に作用させて、第2式を用いると

$$\partial_{\gamma\dot{\beta}}\partial^{\alpha\dot{\beta}}\xi_{\alpha} = \delta^{\alpha}_{\gamma}\partial^{2}\xi_{\alpha} = -m^{2}\xi_{\gamma} = a\partial_{\gamma\dot{\beta}}\eta^{\dot{\beta}} = ab\xi_{\gamma}$$

$$\therefore \qquad ab = -m^{2}$$
(169)

場を適当に rescale $\Rightarrow a = b$ とできる $\Rightarrow a = b = -im$ ととれる:

$$\partial^{\alpha\dot{\beta}}\xi_{\alpha} = -im\eta^{\dot{\beta}} \qquad (170)$$
$$\partial_{\alpha\dot{\beta}}\eta^{\dot{\beta}} = -im\xi_{\alpha} \qquad (171)$$

Dirac spinorとDirac方程式

 ξ_{lpha} と $\eta^{\dot{eta}}$ を併せて、4成分のDirac場を定義:

$$\boldsymbol{\psi} = \begin{pmatrix} \boldsymbol{\xi}_{\alpha} \\ \boldsymbol{\eta}^{\dot{\boldsymbol{\beta}}} \end{pmatrix} \tag{172}$$

⇒ 上記の方程式系は次のようにまとめて書ける:

$$-i\begin{pmatrix}m & 0\\ 0 & m\end{pmatrix}\psi = \begin{pmatrix}0 & \partial_{\alpha\dot{\beta}}\\ \partial^{\alpha\dot{\beta}} & 0\end{pmatrix}\psi$$
$$= \begin{pmatrix}0 & (\sigma^{\mu})_{\alpha\dot{\beta}}\partial_{\mu}\\ (\bar{\sigma}^{\mu})^{\dot{\beta}\alpha}\partial_{\mu} & 0\end{pmatrix}\psi \qquad (173)$$

ガンマ行列*γ^μ*を次のように定義:

$$\gamma^{\mu} \equiv \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix} = \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -\bar{\sigma} \\ \bar{\sigma} & 0 \end{pmatrix} \right\}$$
(174)

 $\Rightarrow \psi$ に対するDirac方程式:

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$$
 (175)

 $\sigma^{\mu} \delta \bar{\sigma}^{\mu} \delta$

$$\sigma_{\mu}\bar{\sigma}_{\nu} + \sigma_{\nu}\bar{\sigma}_{\mu} = 2\eta_{\mu\nu} \tag{176}$$

$$\bar{\sigma}_{\mu}\sigma_{\nu} + \bar{\sigma}_{\nu}\sigma_{\mu} = 2\eta_{\mu\nu} \tag{177}$$

 $\Rightarrow \gamma^{\mu}$ の満たす Clifford 代数:

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}$$
 (178)

● 高次元のディラック場を構成するには、この代数から出発するのが便利。

ロ Chiral(Weyl)射影: Dirac 場 $\in \mathcal{D}^{\frac{1}{2}0} \oplus \mathcal{D}^{0\frac{1}{2}}$ 各成分を抽出する射影 = chiral (またはWeyl) 射影 γ_5 行列を次のように定義:

$$\gamma_5 \equiv i\gamma^0\gamma^1\gamma^2\gamma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(179)

$$\gamma_5^2 = 1 \tag{180}$$

明らかに

 \Rightarrow

$$\gamma_5 \begin{pmatrix} \boldsymbol{\xi}_{\alpha} \\ \boldsymbol{\eta}^{\dot{\alpha}} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\xi}_{\alpha} \\ -\boldsymbol{\eta}^{\dot{\alpha}} \end{pmatrix}$$
(181)

 γ_5 の固有値=chirality。欲しい射影は

$$\mathcal{P}_{\pm} \equiv \frac{1}{2} (1 \pm \gamma_5), \qquad \mathcal{P}_{\pm}^2 = \mathcal{P}_{\pm}, \qquad \mathcal{P}_+ \mathcal{P}_- = 0 \qquad (182)$$

$$egin{array}{lll} \mathcal{P}_+\psi \ = \ m{\xi} &\in \mathcal{D}^{rac{1}{2}0} \ \mathcal{P}_-\psi \ = \ \eta &\in \mathcal{D}^{0rac{1}{2}} \end{array}$$

qft1-3-54

3.2.4 ベクトル場 V^{μ} の満たす方程式: Proca 及び Maxwell 方程式 Massive ベクトル場: Proca 方程式 $\stackrel{m \to 0}{\Longrightarrow}$ Maxwell 方程式 以下massive の場合を考察:

□ 一般的な構造の解析:

ベクトル場 $V^{\mu} \Leftrightarrow \xi_{\alpha\dot{\beta}} = (\sigma_{\mu})_{\alpha\dot{\beta}} V^{\mu} \in \mathcal{D}^{\frac{1}{2}\frac{1}{2}}$ 微分 $\partial_{\nu} \Leftrightarrow \partial_{\alpha\dot{\beta}} = (\sigma^{\nu})_{\alpha\dot{\beta}} \partial_{\nu} \in \mathcal{D}^{\frac{1}{2}\frac{1}{2}}$

 $\partial_{\nu}V^{\mu} \Leftrightarrow \partial_{\alpha\dot{\beta}}\xi_{\gamma\dot{\delta}}$ は次のような表現に分解される:

$$\mathcal{D}^{\frac{1}{2}\frac{1}{2}} \otimes \mathcal{D}^{\frac{1}{2}\frac{1}{2}} = \mathcal{D}^{11} \oplus \mathcal{D}^{10} \oplus \mathcal{D}^{01} \oplus \mathcal{D}^{00}$$
(183)

(1: 対称表現 0: 反対称表現)

このままでは、右辺は多く(16個)の成分を持つことになる。これを次の操 作で制限する。

1. SL(2) 添え字のひとつのペアを縮約 (例: $\epsilon^{\alpha\gamma}$ との縮約) \Rightarrow 反対称化 \Rightarrow 対称部分 \mathcal{D}^{11} が落ちる。

2. 残りの部分の添え字を対称化 \Rightarrow 反対称部分 \mathcal{D}^{00} が落ちる。

 $3. \Rightarrow \mathcal{D}^{10} \mathcal{E} \mathcal{D}^{01}$ が残る。 \Rightarrow 新たな場 $\chi \in \mathcal{D}^{10}$ および $\eta \in \mathcal{D}^{01}$ を導入。

4. χ の運動項を得るために、 $\partial e \chi$ に作用させると

 $\mathcal{D}^{rac{1}{2}rac{1}{2}}\otimes\mathcal{D}^{10}\,=\,\mathcal{D}^{rac{3}{2}rac{1}{2}}\oplus\mathcal{D}^{rac{1}{2}rac{1}{2}}$

上記と同様に、添え字のペアを縮約 $\Rightarrow \mathcal{D}^{rac{31}{22}}$ 部分が落ち、 $\mathcal{D}^{rac{11}{22}}$ のみが残る。これはベクトル場 ξ そのものと同定できる。

5. $\partial \eta$ に対する同様の考察 $\Rightarrow \mathcal{D}^{\frac{11}{22}} \otimes \mathcal{D}^{01} = \mathcal{D}^{\frac{13}{22}} \oplus \mathcal{D}^{\frac{11}{22}} \ni \xi$ これで場 $\xi \in \mathcal{D}^{\frac{11}{22}}, \chi \in \mathcal{D}^{10}, \eta \in \mathcal{D}^{01}$ に対して方程式系が閉じる。

$$\begin{array}{ll} (i) & \partial^{\alpha(\dot{\beta}}\xi_{\alpha}{}^{\dot{\gamma})} = a_{1}\eta^{(\dot{\beta}\dot{\gamma})} & \in \mathcal{D}^{01} \ (\mathsf{ASD}) \\ (ii) & \partial_{\alpha\dot{\beta}}\eta^{(\dot{\beta}\dot{\gamma})} = a_{2}\xi_{\alpha}{}^{\dot{\gamma}} & \in \mathcal{D}^{\frac{1}{2}\frac{1}{2}} \ (\mathsf{vector}) \\ (iii) & \partial_{(\alpha\dot{\gamma}}\xi^{\dot{\gamma}}{}_{\beta)} = a_{3}\chi_{(\alpha\beta)} & \in \mathcal{D}^{10} \ (\mathsf{SD}) \\ (iv) & \partial^{\alpha\dot{\beta}}\chi_{(\alpha\gamma)} = a_{4}\xi^{\dot{\beta}}{}_{\gamma} & \in \mathcal{D}^{\frac{1}{2}\frac{1}{2}} \ (\mathsf{vector}) \end{array}$$

このタイプの方程式: Dirac-Fierz-Pauli 方程式

- 場の成分の数: $4(\xi^{\dot\gamma}_lpha)+3(\eta^{\dot{eta}\dot{\gamma}})+3(\chi_{lphaeta})=10$
- 運動方程式 ⇒ 独立成分は3成分 (以下で見る)。

³()は同種類の添え字の対称化を表す。

□ Dirac-Fierz-Paluli 方程式から Proca 方程式へ:

ローレンツ添え字を持った場で書き直し、ベクトル場がKG方程式を満た すように定数*a_i*を定める。

必要な変換公式

$$\partial_{\alpha\dot{\beta}} = (\sigma^{\mu})_{\alpha\dot{\beta}}\partial_{\mu}$$
(184)

$$\partial^{\alpha\dot{\beta}} = (\bar{\sigma}^{\mu})^{\dot{\beta}\alpha}\partial_{\mu}$$
(185)

$$\boldsymbol{\xi}_{\alpha\dot{\beta}} = (\boldsymbol{\sigma}^{\mu})_{\alpha\dot{\beta}} V_{\mu}$$
$$\boldsymbol{\xi}^{\ \dot{\beta}} - \boldsymbol{\epsilon}^{\dot{\beta}\dot{\gamma}}\boldsymbol{\xi} \cdot - (\boldsymbol{\sigma}^{\mu}\boldsymbol{\epsilon}^{T})^{\ \dot{\beta}} V$$
(186)

•••

•••

 $\boldsymbol{\xi}_{\alpha}{}^{\beta} = \boldsymbol{\epsilon}^{\beta\gamma} \boldsymbol{\xi}_{\alpha\dot{\gamma}} = (\boldsymbol{\sigma}^{\mu} \boldsymbol{\epsilon}^{T})_{\alpha}{}^{\beta} V_{\mu}$ (186) $\boldsymbol{\xi}^{\dot{\beta}}{}_{\gamma} = \boldsymbol{\epsilon}^{\dot{\beta}\dot{\alpha}} \boldsymbol{\xi}_{\dot{\alpha}\gamma}^{T} = (\boldsymbol{\epsilon} \boldsymbol{\sigma}^{\mu T})^{\dot{\beta}}{}_{\gamma} V_{\mu} = (\bar{\boldsymbol{\sigma}}^{\mu} \boldsymbol{\epsilon})^{\dot{\beta}}{}_{\gamma} V_{\mu}$ (187)

$$\chi_{\alpha\beta} = \frac{i}{2} (\sigma^{\mu\nu} \epsilon)_{\alpha\beta} F^{(+)}_{\mu\nu}$$
(188)

$$\eta_{\dot{\alpha}\dot{\beta}} = -\frac{i}{2} (\epsilon^T \bar{\sigma}^{\mu\nu})_{\dot{\alpha}\dot{\beta}} F^{(-)}_{\mu\nu}$$

$$\eta^{\dot{\alpha}\dot{\beta}} = -\frac{i}{2} (\bar{\sigma}^{\mu\nu} \epsilon^T)^{\dot{\alpha}\dot{\beta}} F^{(-)}_{\mu\nu}$$
(189)

注:以前の convention では、 $\chi_{lphaeta}$ は $\chi_{lphaeta} = -i(\sigma^{\mu
u}\epsilon)_{lphaeta}\chi^{(+)}_{\mu
u}$ と定義されるが、後の式が

簡単になるように、
$$\chi^{(+)}_{\mu
u}=-rac{1}{2}F^{(+)}_{\mu
u}$$
と置いた。同様に、 $\eta^{(-)}_{\mu
u}=-rac{1}{2}F^{(-)}_{\mu
u}$ 。

方程式(i)及び(iii)の解析

方程式(i)を再掲

$$\partial^{\alpha(\dot{\beta}} \xi_{\alpha}{}^{\dot{\gamma})} = a_1 \eta^{(\dot{\beta}\dot{\gamma})} \tag{190}$$

上記の変換を行うと、Eq.(i)の左辺は

$$egin{aligned} ext{LHS} &= rac{1}{2} \left\{ (ar{\sigma}^\mu)^{\dotetalpha} \partial_\mu (\sigma^
u \epsilon^T)_lpha^{\dot\gamma} V_
u + (\doteta \leftrightarrow \dot\gamma)
ight\} \ &= rac{1}{2} \left\{ (ar{\sigma}^\mu \sigma^
u \epsilon^T)^{\doteta\dot\gamma} \partial_\mu V_
u + (\doteta \leftrightarrow \dot\gamma)
ight\} \end{aligned}$$

恒等式 $(\bar{\sigma}^{\mu}\sigma^{\nu}\epsilon^{T})^{T} = -\bar{\sigma}^{\nu}\sigma^{\mu}\epsilon^{T}$ を用いてこれを書き直す

LHS =
$$\frac{1}{2} \left((\bar{\sigma}^{\mu} \sigma^{\nu} - \bar{\sigma}^{\nu} \sigma^{\mu}) \epsilon^{T} \right)^{\dot{\beta}\dot{\gamma}} \partial_{\mu} V_{\nu}$$

= $\frac{1}{2i} (\bar{\sigma}^{\mu\nu} \epsilon^{T})^{\dot{\beta}\dot{\gamma}} V_{\mu\nu}$ (191)

ここで
$$V_{\mu\nu} \equiv \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu}$$
 (192)

 $\bar{\sigma}^{\mu\nu}$ がASDであることを考慮してEq.(i)の右辺と比較すると、

$$a_1 F_{\mu\nu}^{(-)} = V_{\mu\nu}^{(-)}$$
 (193)

全く同様にして、Eq.(*iii*)より

$$a_3 F_{\mu\nu}^{(+)} = -V_{\mu\nu}^{(+)} \tag{194}$$

$$\partial_{\alpha\dot{\beta}}\eta^{(\dot{\beta}\dot{\gamma})} = a_2 \xi_{\alpha}{}^{\dot{\gamma}} \tag{195}$$

左辺を書き換えると

LHS =
$$(\sigma^{\mu})_{\alpha\dot{\beta}}\partial_{\mu}\frac{1}{2i}(\bar{\sigma}^{\nu\rho}\epsilon^{T})^{\dot{\beta}\dot{\gamma}}F^{(-)}_{\nu\rho}$$

= $\frac{1}{2i}(\sigma^{\mu}\bar{\sigma}^{\nu\rho}\epsilon^{T})_{\alpha}{}^{\dot{\gamma}}\partial_{\mu}F^{(-)}_{\nu\rho}$ (196)

$\sigma^{\mu}\bar{\sigma}^{ u ho}$ の分解公式

この積の群論的な構造: $\mathcal{D}^{rac{11}{22}}\otimes\mathcal{D}^{01}=\mathcal{D}^{rac{11}{22}}\oplus\mathcal{D}^{rac{13}{22}}$ 。

 $\mathcal{D}^{\frac{13}{22}}$ 部分は、 σ^{μ} と $\bar{\sigma}^{
u
ho}$ が縮約され、スピナー添え字が反対称化されているので現れない。

 $\Rightarrow \mathcal{D}^{rac{11}{22}}$ に属する σ^{μ} のみで書けるはず。可能な形は

$$\sigma^{\mu}\bar{\sigma}^{\nu\rho} = \mathbf{b}(\eta^{\mu\nu}\sigma^{\rho} - \eta^{\mu\rho}\sigma^{\nu}) + \mathbf{c}\epsilon^{\mu\nu\rho\lambda}\sigma_{\lambda}$$
(197)

係数b, cは添え字 μ, ν, ρ に具体的な数を入れて比較すると容易に求まる。

$$\sigma^{\mu}\bar{\sigma}^{\nu\rho} = i(\eta^{\mu\nu}\sigma^{\rho} - \eta^{\mu\rho}\sigma^{\nu}) + \epsilon^{\mu\nu\rho\lambda}\sigma_{\lambda} \quad (198)$$

$$\bar{\sigma}^{\mu}\sigma^{\nu\rho} = i(\eta^{\mu\nu}\bar{\sigma}^{\rho} - \eta^{\mu\rho}\bar{\sigma}^{\nu}) + \epsilon^{\mu\nu\rho\lambda}\bar{\sigma}_{\lambda} \quad (199)$$

これらの恒等式を用いると、Eq. (ii)及び(iv)から次の二つの式が得られる:

$$\partial^{\mu} F^{(-)}_{\mu\nu} = a_2 V_{\nu} \tag{200}$$

$$\partial^{\mu} F_{\mu\nu}^{(+)} = -a_4 V_{\nu} \tag{201}$$

・ これより、 $a_2
eq 0$ または $a_4
eq 0$ ならば、 $\partial^{\mu}V_{\mu} = 0$ となる

方程式系の整合性これまでのまとめ

 $\partial^\mu F^{(-)}_{\mu
u}\,=\,a_2 V_
u$

$$\partial^{\mu} F^{(+)}_{\mu\nu} = -a_4 V_{\nu} \tag{203}$$

(202)

$$a_1 F^{(-)}_{\mu\nu} = V^{(-)}_{\mu\nu}$$
 (204)

$$a_3 F^{(+)}_{\mu\nu} = -V^{(+)}_{\mu\nu}$$
 (205)

∂^µを(204)に作用

$$a_{1}\partial^{\mu}F_{\mu\nu}^{(-)} = \partial^{\mu}V_{\mu\nu}^{(-)} = \frac{1}{2}\partial^{\mu}(V_{\mu\nu} - \tilde{V}_{\mu\nu})$$
$$= \frac{1}{2}(\partial^{2}V_{\nu} - \partial_{\nu}(\partial \cdot V)) \quad \Leftarrow \partial^{\mu}\tilde{V}_{\mu\nu} = 0 \qquad (206)$$

式(202)を代入

$$a_1 a_2 V_{\nu} = \frac{1}{2} (\partial^2 V_{\nu} - \partial_{\nu} (\partial \cdot V)) \qquad (207)$$

同様にして、(202)と(203)より

$$a_3 a_4 V_{\nu} = \frac{1}{2} (\partial^2 V_{\nu} - \partial_{\nu} (\partial \cdot V))$$
(208)

(209)

• $V_{
u}$ が質量mのKG方程式を満たすことを要求すると 4 $a_1a_2 = a_3a_4 = -rac{m^2}{2}$

$$a_1=1, a_3=-1$$
を選択 $\Rightarrow F^{(\pm)}_{\mu
u}=V^{(\pm)}_{\mu
u}$ (204), (205) $a_2=-a_4=-m^2/2$

↓ Proca 方程式

 4 すでに述べたように、この場合には $\partial \cdot V = 0$ は自動的。

qft1-3-63

$$F_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu} \qquad (210)$$

$$\partial^{\mu}F_{\mu\nu} = -m^{2}V_{\nu} (\equiv j_{\nu}) \qquad (211)$$

$$\partial^{\mu}V_{\mu} = 0 \qquad (212)$$

• $m^2
e 0 \Rightarrow \partial^\mu V_\mu = 0$ は第2式から従う。

⇒ Proca場は3個の独立な自由度を持つ。

• $m^2 = 0 \Rightarrow \text{massless} \text{ } \mathcal{O} \text{ } \text{Maxwell } \hat{\mathcal{T}}$ この場合には、 $\partial^{\mu}V_{\mu} = 0$ の条件を課す必要がないことに注意。

● Proca場の方程式は局所的なゲージ不変性を持たない。自発的対称性の破れによるヒッグズ機構(の一部)と解釈される。

□ Proca場の応用: London による超伝導の有効理論: Proca場の最初の出現: London 兄弟による超伝導のマクロな有効理論⁵。 V^{μ} を effective な Maxwell 場 A^{μ} と同定。 \Rightarrow Proca 方程式: カレント \propto ベクトルポテンシャル

 $j^{\mu} = -m^2 A^{\mu}$ London 方程式(の相対論的な形) (213)

電気的なソースがなく $(i.e. A_0 = 0)$ しかも時間依存性がない $(\partial_t^2 \vec{A} = 0)$ 場合のmassiveなKG方程式:

$$(-\vec{\nabla}^2 + m^2)\vec{A} = 0$$
 (214)

このcurlをとり、 $ec{
abla} imesec{A}=ec{B}$ を用いると、

$$ec{
abla}^2ec{B}\,=\,rac{1}{\lambda_L^2}ec{B}\,,\qquad \lambda_L=rac{1}{m}=$$
 London penetration depth

この解は、Meissner 効果を記述する:

$$\vec{B}(\vec{x}) = \vec{B}_0 e^{-\frac{1}{\lambda_L} \hat{n} \cdot \vec{x}}, \qquad \hat{n}^2 = 1$$
 (215)

⁵F. London and H. London, Proc. Roy. Soc. (London) A149, (1935) 72.

qft1-3-65

演習 3.11 スピン 3/2を持つ、massive な Rarita-Schwinger 場 $\psi_{\mu\alpha}$ の満た す方程式を、次の二つの既約表現を用いて構成せよ。

$$\boldsymbol{\xi}_{(\alpha\beta)}{}^{\dot{\gamma}} \in \mathcal{D}^{1\frac{1}{2}}, \quad \boldsymbol{\chi}_{\alpha}{}^{(\dot{\beta}\dot{\gamma})} \in \mathcal{D}^{\frac{1}{2}1}$$
 (216)

注: $\psi_{\mu\alpha}$ は16成分を持つように見えるのに対し、 $\xi \ge \chi$ は併せて12の自由度しか持たないことに注意。 $\Rightarrow \psi_{\mu\alpha}$ に拘束を課して、スピン1/2部分を表す4成分を落とす必要あり。

3.3 場のローレンツ不変な作用の構成

ミクロな基本作用の持つべき性質:

1. Locality: ⇔ 作用は同一点での場の積で構成され、微分の数は有限。

- 2. Reality or Hermiticity: \leftarrow エネルギー=ハミルトニアンは実。量 子レベルでは、エルミート性の要請。特殊な場合を除いて(下の注参照) エルミート演算子の固有値は実。
- 3. Lorentz Invariance:

注: 特殊な場合には、エルミート演算子は複素固有値を持つことができる。 $\mathcal{O} =$ エルミート演算子、v = 固有値 λ に属する固有ベクトルとすると

$$\mathcal{O}v = \lambda v$$

$$\therefore \quad (v, \mathcal{O}v) = \lambda(v, v) = (\mathcal{O}v, v) = (v, \mathcal{O}v)^* = \lambda^*(v, v)$$

$$\therefore \quad (\lambda - \lambda^*)(v, v) = 0$$
(217)

 $\Rightarrow \lambda$ は、 $(v,v) \neq 0$ の場合は実。vがゼロノルムを持つ場合には λ は実である必要はない。

3.3.1 自由場の作用

上記の一般的要請を満たし、自由場の運動方程式を生成する作用を構成する。

単位系:
$$\hbar = c = 1$$
となるようにとる。
次元の勘定

$$S \sim \hbar \sim px \sim Mcx \sim ML \sim 1$$

 $\therefore \qquad L \sim \frac{1}{M}$
(218)
以下演算子ののmass次元を[O]と記す。

□ Klein-Gordon (scalar) 場:

運動方程式とそれを生成する作用

$$(\partial^2 + m^2)\phi = 0 \tag{219}$$

$$S = \int d^4x \frac{1}{2} \phi (\partial^2 + m^2) \phi \qquad (220)$$

qft1-3-68

 ϕ の次元: 運動項の部分から読み取る

 $\mathbf{0} = -\mathbf{4} + \mathbf{2} + \mathbf{2}[\phi] \quad \Rightarrow \quad [\phi] = \mathbf{1} \tag{221}$

□ Weyl 場:

 $oldsymbol{\xi}_lpha \in \mathcal{D}^{rac{1}{2}0}$ の場合: 運動方程式

$$\partial^{\alpha\dot{\beta}}\xi_{\alpha} = 0 \tag{222}$$

ローレンツ不変量を作るには、 $\mathcal{D}^{0\frac{1}{2}}$ のように変換する場が必要。 $\Rightarrow \xi_{\alpha}$ の複素共役 $(\xi_{\alpha})^* = \xi^*_{\dot{\alpha}}$ を用いる。 明らかなローレンツ不変量は

$$\mathcal{I}_{\xi} = \xi^*_{\dot{\beta}} \partial^{\alpha \dot{\beta}} \xi_{\alpha} = \xi^*_{\dot{\beta}} (\bar{\sigma}^{\mu})^{\dot{\beta}\alpha} \partial_{\mu} \xi_{\alpha} = \xi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \xi \qquad (223)$$

Realityの問題

- 線形運動方程式(222)のレベルでは、 ξ_{α} は通常の数(c#)の関数と見なせる。
- フェルミオンを記述する場としてその二次の作用を書くときには、フェ ルミオンに対してはコヒーレントな古典場は存在せず、第二量子化の形式

で意味のあるフェルミ場は既に量子化された反可換な振動子で記述される ことに注意。

- ⇒ フェルミ場に対しては、何らかの有効な"古典場"の概念を導入して、その複素共役を定義しなければならない。
- その定義は、経路積分法で用いられたときに、反可換な場を用いるオペレー ター形式と整合的な結果を出すものでなければならない。

<u>整合的な答え</u>: ξ_{α} はグラスマン代数のodd element (グラスマン数 = 反可 換な c#)と解釈する。そのような要素 α , β は次の性質を満たすものとして 定義される:

$$\alpha \beta = -\beta \alpha$$
, $(\alpha \beta)^* \equiv \beta^* \alpha^*$ (224)

「複素共役」"*"はエルミート共役と同じ性質を持つように定義。
*I*ξの複素共役と正しい実作用:

恒等式
$$(\bar{\sigma}^{\mu})^{*} = (\epsilon \sigma^{\mu T} \epsilon^{T})^{*} = \epsilon \sigma^{\mu} \epsilon^{T}$$
を用いると(223)の複素共役は、
 $\mathcal{I}_{\xi}^{*} = (\xi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \xi)^{*} = \partial_{\mu} \xi^{*}_{\dot{\alpha}} ((\bar{\sigma}^{\mu})^{\dot{\beta}\alpha})^{*} \xi_{\beta} = \partial_{\mu} \xi^{*}_{\dot{\alpha}} (\epsilon \sigma^{\mu} \epsilon^{T})^{\beta \dot{\alpha}} \xi_{\beta}$
 $= \partial_{\mu} \xi^{*}_{\dot{\alpha}} (\epsilon \sigma^{\mu T} \epsilon^{T})^{\dot{\alpha}\beta} \xi_{\beta} = \partial_{\mu} \xi^{*}_{\dot{\alpha}} (\bar{\sigma}^{\mu})^{\dot{\alpha}\beta} \xi_{\beta} = \partial_{\mu} \xi^{\dagger} \bar{\sigma}^{\mu} \xi$ (225)

• $\mathcal{I}_{\xi} + \mathcal{I}_{\xi}^*$ は全微分! \Rightarrow 作用として用いることはできない。

● もう一つの実の組み合わせを採用:

$$\mathcal{L}_{\xi} = \frac{i}{2} \left(\xi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \xi - \partial_{\mu} \xi^{\dagger} \bar{\sigma}^{\mu} \xi \right) = \frac{i}{2} \xi^{\dagger} \bar{\sigma}^{\mu} \stackrel{\leftrightarrow}{\partial_{\mu}} \xi \qquad (226)$$

 $\delta \int d^4 x \mathcal{L}_{\xi} = 0 \Rightarrow ar{\sigma}^{\mu} \partial_{\mu} \xi = 0$: 正しい運動方程式

 $\underline{\eta^{\dotlpha}\in\mathcal{D}^{0rac{1}{2}}}$ の場合:

$$\mathcal{L}_{\eta} = \frac{i}{2} \eta^{\dagger} \sigma^{\mu} \stackrel{\leftrightarrow}{\partial_{\mu}} \eta \qquad (227)$$

Weyl (及びDirac)場の質量次元: $4 = 1 + 2[\xi] \Rightarrow [\xi] = 3/2$

□ Dirac 場:

Dirac場のラグランジアンの運動項:

$$egin{aligned} \mathcal{L}^{kin}_{\psi} &= \mathcal{L}_{\xi} + \mathcal{L}_{\eta} = rac{i}{2} \xi^{\dagger} ar{\sigma}^{\mu} \partial_{\mu} \xi + rac{i}{2} \eta^{\dagger} \sigma^{\mu} \partial_{\mu} \eta \ &= rac{i}{2} (\eta^{\dagger}, \xi^{\dagger}) \left(egin{aligned} 0 & \sigma^{\mu} \stackrel{\leftrightarrow}{\partial}_{\mu} \ ar{\sigma}^{\mu} \stackrel{\leftrightarrow}{\partial}_{\mu} & 0 \end{array}
ight) \left(rac{\xi}{\eta}
ight) \ &= rac{i}{2} (\xi^{\dagger}, \eta^{\dagger}) \left(egin{aligned} 0 & 1 \ 1 & 0 \end{array}
ight) \gamma^{\mu} \stackrel{\leftrightarrow}{\partial}_{\mu} \left(rac{\xi}{\eta}
ight) \ &= rac{i}{2} \psi^{\dagger} \gamma^{0} \gamma^{\mu} \stackrel{\leftrightarrow}{\partial}_{\mu} \psi \ &= rac{i}{2} ar{\psi} \gamma^{\mu} \stackrel{\leftrightarrow}{\partial}_{\mu} \psi \end{aligned}$$

ここで

$$\bar{\psi} \equiv \psi^{\dagger} \gamma^{0} = \text{Dirac conjugate}$$
 (229)

(228)

質量項: *ξ*とηを結ぶ

$$\mathcal{L}_{\psi}^{m} = -m\eta^{\dagger}\xi + \xi^{\dagger}\eta = -m(\xi^{\dagger},\eta^{\dagger})\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}\begin{pmatrix} \xi\\ \eta \end{pmatrix}$$
$$= -m\bar{\psi}\psi \qquad (230)$$

全体のラグランジアン

$$\mathcal{L}_{\psi} = \mathcal{L}_{\psi}^{kin} + \mathcal{L}_{\psi}^{m} = \frac{i}{2} \bar{\psi} \gamma^{\mu} \overleftarrow{\partial}_{\mu} \psi - m \bar{\psi} \psi \qquad (231)$$

<u>作用</u>のレベルでは、表面項を無視すれば、次のよく見る形に書き換えられる:

$$-\int d^4x \frac{i}{2} \partial_\mu \bar{\psi} \gamma^\mu \psi \simeq \int d^4x \frac{i}{2} \bar{\psi} \gamma^\mu \partial_\mu \psi$$

$$\therefore \qquad S_\psi = \int d^4x \bar{\psi} (i\gamma^\mu \partial_\mu - m) \psi \qquad (232)$$

□ Proca 場:

Proca場の運動方程式

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

$$\partial^{\mu}F_{\mu\nu} = -m^{2}A_{\nu}$$

$$\partial^{\mu}A_{\mu} = 0$$

(233)

これらは次の作用から生成されることが容易にチェックできる:

$$S_{A} = \int d^{4}x \left(-\frac{1}{4} F^{\mu\nu}[A] F_{\mu\nu}[A] + \frac{m^{2}}{2} A^{\mu} A_{\mu} \right)$$
(234)

3.3.2 相互作用ラグランジアン

□ Scalingの解析:

相互作用ラグランジアンの一般形

$$\mathcal{L}_{int} = \sum_{i} g_i \mathcal{O}_i, \qquad [g_i] = 4 - [\mathcal{O}_i] \qquad (235)$$

一般に g_i は次元を持つ \Rightarrow エネルギー(mass)スケールを指定して始めてその「大きさ」を議論できる。

ある mass scale M で \mathcal{L}_{int} を定義し、これを無次元結合定数 $g_i^{(0)}$ を用いて書き直す:

$$\mathcal{L}_{int} = \sum_{i} \frac{g_i^{(0)}}{M^{[\mathcal{O}_i]-4}} \mathcal{O}_i$$
(236)

Mよりうんと低いスケール $\sim \mu$ では、これらの項は次のように振る舞う:

$$\sum_{i} \frac{g_{i}^{(0)}}{M^{[\mathcal{O}_{i}]-4}} \mu^{[\mathcal{O}_{i}]} = \sum_{i} g_{i}^{(0)} \left(\frac{\mu}{M}\right)^{[\mathcal{O}_{i}]-4} \mu^{4}$$
(237)

• 次元が4のオペレーターを基準にすると、低エネルギーでは、次元が4 以上のオペレーターの寄与は非常に小さい。そのような $O_i =$ "irrelevant" operator

一方、*M*よりうんと大きなエネルギースケールΛでの振る舞いは、

$$\sum_{i} \frac{g_{i}^{(0)}}{M^{[\mathcal{O}_{i}]-4}} \Lambda^{[\mathcal{O}_{i}]} = \sum_{i} g_{i}^{(0)} \Lambda^{4} \left(\frac{\Lambda}{M}\right)^{[\mathcal{O}_{i}]-4}$$
(238)

次元4のオペレーターと比較して、"irrelevant" operatorsの寄与は非常に大きくなり、しばしばコントロールすることができない"繰り込み不可能"な振る舞いを惹き起こす。

⇔ オペレーターの個数が当初は有限であっても、それを挿入したプロセスから無限個の高い次元のオペレーターが生成されてしまう。⇒後述

● たちのよい場の理論を作るには、ミクロな理論においてはそれらの "irrelevant"なオペレーターを除外する必要がある。

それから得られる低エネルギー有効作用においては、それらのオペレーターは生成されるが、その係数は計算可能であり、通常無視できるほど小さい。

□ 繰り込み可能な相互作用:

ローレンツ不変性を考慮すると、スピン $0, \frac{1}{2}, 1$ を持つ場の許される(繰り込み可能な)相互作用を列挙することができる⁶。

全微分と<u>内部対称性の添え字を除いて</u>、許される相互作用は以下のように なる。

 $[\mathcal{O}] = 2$:

$$\phi^2, A^2$$
 (239)

 $[\mathcal{O}] = 3$:

$$\phi^3$$
, $\phi\partial \cdot A$, $\bar{\psi}\psi$, $\psi\gamma_5\psi$, (240)

 $[\mathcal{O}] = 4$:

 ϕ^4 , $\partial \phi \cdot \partial \phi$, $(A^2)^2$, $\phi^2 A^2$, $\phi^2 \partial \cdot A$, $A^2 \partial \cdot A$ $(\partial \cdot A)^2$, $\bar{\psi}\psi\phi$, $\bar{\psi}\gamma_5\psi\phi$, $\bar{\psi}\gamma^\mu\psi A_\mu$, $\bar{\psi}\gamma^\mu\gamma_5\psi A_\mu$ (241) ⁶スピン3/2及び2を持つ場は重力理論と関係しており、場の理論のレベルでは摂動論 的に繰り込み不可能であることが知られている。 繰り込み不可能な相互作用の例:

 ϕ^6 相互作用 $\Rightarrow 1$ ループで8点関数が発散し、 $\log(\Lambda/m) \times \phi^8$ なる項が生成される。

 ϕ^8 相互作用があるとさらに10点関数が発散。 これが繰り返され、結局理論は有限の数の結合定数の調整では制御できな くなり、繰り込み不可能となる。

4 対称性の原理

4.1 Noetherの定理

4.2 Schwingerの作用原理

4.1 Noetherの定理

系の対称性(変換に対する不変性)の帰結を表現する基本定理: Emmy Noether (1918)

基本定理: 一般の変換に対する作用の不変性から従う帰結 応用

<u>第一定理</u>: 変換が有限次元の群の作用である場合 第二定理: 変換が無限次元の群(ゲージ群)の作用である場合

□ 基本定理:

一種類の場 $\phi(x)$ がある場合:(複数の場がある場合への拡張は容易。) 作用の一般形を次の形に書く¹:

$$S = \int_{\Omega} [dx] \mathcal{L}(\phi(x), \partial_{\mu}\phi(x))$$
(1)

[dx] = 積分測度 $\Omega = 積分領域$

一般的な無限小変換を考える

$$x^{\mu} \rightarrow y^{\mu} = x^{\mu} + \Delta x^{\mu}, \quad \Omega \rightarrow \Omega'$$
 (2)

$$\phi(x) \rightarrow \phi'(y) = \phi(x) + \Delta \phi(x)$$
 (3)

 ϕ' は<u>関数形の変化</u>を表す。 Δ はtotal variationを表す記号。 (特別な場合: $\phi(x)$ が"スカラー" $\Leftrightarrow \Delta \phi = 0$ 。内部対称性の場合:

 $\Delta x^{\mu}=0_{\circ}$)

¹高階の微分、 $\partial_{\mu}\partial_{\nu}\phi$ 等、を許す場合への拡張は演習。

Lie 変分 = 同一座標点 x での場の形の変化: $\overline{\delta}\phi(x) = \phi'(x) - \phi(x)$ (3)の左辺: $\phi'(x + \Delta x) \simeq \phi'(x) + \Delta x^{\mu} \partial_{\mu} \phi(x)$ $\Rightarrow \quad \overline{\delta}\phi(x) = \phi'(x) - \phi(x) = \Delta \phi(x) - \Delta x^{\mu} \partial_{\mu} \phi(x)$ (4)

全変分とLie変分の関係

•••

$$\Delta \phi(x) = \overline{\delta} \phi(x) + \Delta x^{\mu} \partial_{\mu} \phi(x)$$
 (5)

Lagrange 微分: Lagrange 微分 $\delta \mathcal{L} / \delta \phi$ を次のように定義:

$$\frac{\delta \mathcal{L}}{\delta \phi} \equiv \frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \qquad (6)$$

 ϕ が運動方程式を満たす \Leftrightarrow Lagrange 微分がゼロ

qft1-4-3

Noetherの基本定理:

1. <u>基本恒等式</u>:上記の一般的な無限小変換のもとでの作用の変化は次のように書ける

$$S' - S = \int_{\Omega} [dx] \left(\partial_{\mu} j^{\mu} + \frac{\delta \mathcal{L}}{\delta \phi} \bar{\delta} \phi \right)$$
(7)

ここで current j^{μ} は

$$j^{\mu} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \bar{\delta} \phi + \Delta x^{\mu} \mathcal{L}$$
(8)

₩

2. <u>基本定理</u>: 上記の変換が系の対称変換である場合、すなわちそれに対して作用が任意の領域Ωにおいて不変である場合、局所的に

$$\partial_{\mu}j^{\mu} + \frac{\delta \mathcal{L}}{\delta \phi} \bar{\delta} \phi = 0$$
 (9)

が成り立つ。

さらに、<u>運動方程式を満たす配位に対しては</u>、カレントの保存 $\partial_{\mu}j^{\mu} = 0$ が成り立ち、space-like surface Σ 上の積分で定義される charge が保存される:

$$0 = \int_{\Sigma_1}^{\Sigma_2} \partial_\mu j^\mu = \int_{\Sigma_2} j^\mu d\Sigma_\mu - \int_{\Sigma_1} j^\mu d\Sigma_\mu \quad (10)$$

$$\therefore \qquad Q(\Sigma_1) = Q(\Sigma_2) , \qquad Q(\Sigma) \equiv \int_{\Sigma} j^\mu d\Sigma_\mu \quad (11)$$

特に、 $\Sigma \varepsilon t = -$ 定の面にとればそれに直行するベクトル $d\Sigma_{\mu}$ は $(d^3x, 0, 0, 0)$ となり、 $\boxed{\boldsymbol{Q} = \int d^3x j^0}$ と表される。

- 明らかに、基本定理は基本恒等式から直ちに従う。
- この段階での j^{μ} はまだ変換のparameterを含んでいることに注意。

基本恒等式の証明:

変換後の作用は

$$S' = \int_{\Omega'} [dy] \mathcal{L}(\phi'(y), \partial_{\mu} \phi'(y))$$
(12)

まず、場の変化をyでのLie変分で書き表す: $\phi'(y) = \phi(y) + \overline{\delta}\phi(y)$ 。 微小量の一次のオーダーまでとると

$$S' = \int_{\Omega'} [dy] \mathcal{L}(\phi(y), \partial_{\mu}\phi(y)) + \int_{\Omega} [dx] \left(\frac{\partial \mathcal{L}}{\partial \phi} \bar{\delta}\phi + \frac{\partial \mathcal{L}}{\partial \partial_{\mu}\phi} \partial_{\mu} \bar{\delta}\phi\right)$$
(13)

第一項の積分領域 Ω' をもとに戻すために、xでの表式に書き換える:

$$\int_{\Omega'} [dy] \mathcal{L}[y] = \int_{\Omega} \left| \frac{\partial y}{\partial x} \right| [dx] \mathcal{L}[x + \Delta x]$$
$$= \int_{\Omega} \left| \frac{\partial y}{\partial x} \right| [dx] \left(\mathcal{L}[x] + \Delta x^{\mu} \partial_{\mu} \mathcal{L} \right)$$
(14)

 $(\partial_{\mu}\mathcal{L}$ は、 \mathcal{L} の全てのx依存性についての微分。)

ヤコビアンの計算: 行列 $M \in M^{\nu}_{\mu} \equiv \partial_{\mu} \Delta x^{\nu} (= 微小)$ と定義すると $\left| \frac{\partial y}{\partial x} \right| = \det |1 + M| = \exp \operatorname{Tr} \ln(1 + M) \simeq \exp \operatorname{Tr} M \simeq 1 + \partial_{\mu} \Delta x^{\mu}$: $[dy] = [dx](1 + \partial_{\mu} \Delta x^{\mu})$ (15)

$$S' = \int_{\Omega} [dx] (1 + \partial_{\rho} \Delta x^{\rho}) \left(\mathcal{L} + \Delta x^{\mu} \partial_{\mu} \mathcal{L} + \frac{\partial \mathcal{L}}{\partial \phi} \bar{\delta} \phi + \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \partial_{\mu} \bar{\delta} \phi \right)$$

$$= \int_{\Omega} [dx] \left[\mathcal{L} + \partial_{\mu} (\Delta x^{\mu} \mathcal{L}) + \frac{\delta \mathcal{L}}{\delta \phi} \bar{\delta} \phi + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \bar{\delta} \phi \right) \right]$$

$$= \int_{\Omega} [dx] \left[\mathcal{L} + \frac{\delta \mathcal{L}}{\delta \phi} \bar{\delta} \phi + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \bar{\delta} \phi + \Delta x^{\mu} \mathcal{L} \right) \right]$$
(16)
第 1 項は S を与えるから、これを引くと、基本恒等式 (7)を得る。//

こわらを仕入すると

Remark 1: ヤコビアンの計算の幾何学的理解:

(13)の第一項とSの差をとると

$$\int_{\Omega'} [dy] \mathcal{L}[y] - \int_{\Omega} [dx] \mathcal{L}[x]$$
(17)

 $\partial \Omega = \Omega' - \Omega$ の部分の体積は $\Delta x^{\mu} d\Sigma_{\mu}$ 従って、上記の差はStokesの定理を用いて

$$\int_{\partial\Omega} d\Sigma_{\mu} \Delta x^{\mu} \mathcal{L}[x] = \int_{\Omega} [dx] \partial_{\mu} (\Delta x^{\mu} \mathcal{L})$$
(18)

これは正しく Δx^{μ} に依存する部分の寄与 を与えている。 **Remark 2:** *S*を不変にしない任意の変換の場合:

基本恒等式はこの場合でも成立。運動方程式を満たす配位を考え、領域を space-like な面 Σ_1, Σ_2 に囲まれた部分とすると

$$\Delta S = \int_{\Sigma_1}^{\Sigma_2} [dx] \partial_\mu j^\mu = G[\Sigma_2] - G[\Sigma_1]$$
(19)

ここで
$$G[\Sigma] = \int_{\Sigma} j^{\mu} d\Sigma_{\mu} = \text{Charge}$$
 (20)

この式は次節で述べるSchwingerの作用原理の基本式となる。

□ 適用例 1:1粒子の場合のエネルギー保存:

Lagrangian Lが時間tに陽に依らないなら (すなわち $L = L(x(t), \dot{x}(t)))$ 作用は時間並進

$$\boldsymbol{t} \to \boldsymbol{t}' = \boldsymbol{t} + \boldsymbol{\epsilon} \tag{21}$$

に対して不変。 粒子の座標x(t)は並進に対してスカラー $\Leftrightarrow \Delta x = 0$ ⇒ Lie 変分

$$\bar{\delta}x = 0 - \epsilon \partial_t x = -\epsilon \dot{x} \tag{22}$$

基本定理を適用 ⇒ 次の "カレント" が保存

$$j = \frac{\partial L}{\partial \dot{x}} \bar{\delta}x + \epsilon L = p(-\epsilon \dot{x}) - \epsilon L = \epsilon (L - p\dot{x}) = -\epsilon H \qquad (23)$$

 ϵ は任意 \Rightarrow H が保存

□ 適用例 2: U(1)対称性をもつ複素スカラー場理論における電荷保存: $\phi(x) =$ 複素スカラー場

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi^* - m^2 |\phi|^2 - \frac{\lambda}{4} |\phi|^4$$
(24)

 \mathcal{L} は次のglobalなU(1)変換に対して不変

$$\phi'(x) = e^{-ie\Lambda}\phi(x) \tag{25}$$

Λを無限小とすれば

$$\Delta \phi(x) = \overline{\delta} \phi(x) = -ie\Lambda \phi(x)$$
(26)

$$\Delta \phi(x)^* = \bar{\delta} \phi(x)^* = ie\Lambda \phi(x)^*$$
(27)

基本定理を適用 ⇒ 次のカレントが保存

$$j^{\mu} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \bar{\delta} \phi + \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi^{*}} \bar{\delta} \phi^{*} = \frac{1}{2} \partial^{\mu} \phi^{*} (-ie\Lambda \phi) + \frac{1}{2} \partial^{\mu} \phi (ie\Lambda \phi^{*})$$
$$= \frac{ie}{2} \phi^{*} \stackrel{\leftrightarrow}{\partial^{\mu}} \phi \Lambda$$
(28)

 Λ は任意 ⇒ 有限な保存カレントとして

$$J^{\mu} = \frac{ie}{2} \phi^* \stackrel{\leftrightarrow}{\partial^{\mu}} \phi \tag{29}$$

を得る。

□ Noetherの第一定理:

作用を不変にする変換は、変換群Gをなす。

$$\dim G = \begin{cases} \text{finite : global sym} \\ \infty : \text{local or gauge sym} \end{cases}$$
(30)

Noetherの第一定理 = Gが有限なLie 群の場合に基本定理を適用したもの。

$$X_a: x^{\mu}$$
に対するGの生成子
 $T_a: \phi$ に対するGの生成子
 $\epsilon^a: 無限小のglobal 変換のparameter$
 $\Delta x^{\mu} = \epsilon^a X_a x^{\mu} = \epsilon^a (\xi^{\nu}_a(x)\partial_{\nu}) x^{\mu} = \xi^{\mu}_a(x)\epsilon^a$ (31)

$$\Delta \phi = \epsilon^a T_a \phi \tag{32}$$

 ϕ は一般に多成分場、 T_a は行列だが、その成分の添え字は省略する。

Lie 変分は

$$\bar{\delta}\phi = \Delta\phi - \Delta x^{\mu}\partial_{\mu}\phi = (T_a\phi - \xi^{\mu}_a\partial_{\mu}\phi)\epsilon^a$$
(33)

この変換に対して系が不変ならば、基本定理に代入し、 ϵ^a をはずすと次の有限な関係式を得る:

Noetherの第一定理

$$\partial_{\mu} j_{a}^{\mu} = -\frac{\delta \mathcal{L}}{\delta \phi} (T_{a} \phi - \xi_{a}^{\mu} \partial_{\mu} \phi) \qquad (34)$$
$$j_{a}^{\mu} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} (T_{a} \phi - \xi_{a}^{\mu} \partial_{\mu} \phi) + \xi_{a}^{\mu} \mathcal{L} \qquad (35)$$

運動方程式が成り立てば、currents j^{μ}_{a} は保存する。

Remark 1:

 $\mathcal{L} = L記の変換に対して不変なLagrange密度。$ $\mathcal{K} = 対称性を破る付加項 <math>\Rightarrow 2Lagrange密度 = \mathcal{L} + \mathcal{K}$ 系全体の運動方程式が満たされているとすると、

$$\frac{\delta(\mathcal{L} + \mathcal{K})}{\delta\phi} = 0 \quad \Rightarrow \quad \frac{\delta\mathcal{L}}{\delta\phi} = -\frac{\delta\mathcal{K}}{\delta\phi}$$
(36)

*C*の部分に対してはNoetherの定理 (34)が成り立つから

$$\partial_{\mu} j_{a}^{\mu} = -\frac{\delta \mathcal{L}}{\delta \phi} (T_{a} \phi - \xi_{a}^{\mu} \partial_{\mu} \phi)$$
$$= \frac{\delta \mathcal{K}}{\delta \phi} (T_{a} \phi - \xi_{a}^{\mu} \partial_{\mu} \phi) \neq 0$$
(37)

従って、currentの保存則は付加項により一定の規則で破れる。これを、" partial conservation"と呼ぶ。 Remark 2:

• 内部対称性の場合: $\Delta x^{\mu} = 0 \Rightarrow \pi \nu \nu$ トは簡単な形 $j^{\mu} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \overline{\delta} \phi$. このとき、基本定理から Lagrangian 自体が不変 であることが言える。 証明:

$$\bar{\delta}\mathcal{L} = \frac{\partial\mathcal{L}}{\partial\phi}\bar{\delta}\phi + \frac{\partial\mathcal{L}}{\partial\partial_{\mu}\phi}\partial_{\mu}\bar{\delta}\phi = \frac{\delta\mathcal{L}}{\delta\phi}\bar{\delta}\phi + \partial_{\mu}\left(\frac{\partial\mathcal{L}}{\partial\partial_{\mu}\phi}\bar{\delta}\phi\right)$$
$$\stackrel{j^{\mu}\mathcal{O}\mathbb{H}}{=}\frac{\delta\mathcal{L}}{\delta\phi}\bar{\delta}\phi + \partial_{\mu}j^{\mu} \stackrel{\bar{\mathbf{Z}}\pm\bar{\mathbf{z}}\pm}{=} 0 \tag{38}$$

• 逆に言えば、 $\Delta x^{\mu} \neq 0$ の一般の場合、Lagrangian のLie variation で 不変にならない部分は $\Delta x^{\mu} \mathcal{L}$ 項を与える。実際

$$\bar{\delta}\mathcal{L} = \frac{\delta\mathcal{L}}{\delta\phi}\bar{\delta}\phi + \partial_{\mu}\left(\frac{\partial\mathcal{L}}{\partial\partial_{\mu}\phi}\bar{\delta}\phi\right)$$
$$= \frac{\delta\mathcal{L}}{\delta\phi}\bar{\delta}\phi + \partial_{\mu}j^{\mu} - \partial_{\mu}(\Delta x^{\mu}\mathcal{L}) = -\partial_{\mu}(\Delta x^{\mu}\mathcal{L}) \qquad (39)$$

ここで、 j^{μ} は基本定理に現れる保存カレント $(\partial \mathcal{L}/\partial \partial_{\mu}\phi)ar{\delta}\phi + \Delta x^{\mu}\mathcal{L}$ 。

Remark 3: $\epsilon^a \rightarrow \epsilon^a(x)$ のlocal化を利用して保存カレントを求める方法 1. 内部対称性の場合:

Lagrangian はもはや不変でなくなるが、それは $\partial_{\mu}\phi$ の変換において ϵ^{a} を local 化したことから余分に生ずる項、すなわち $T_{a}\phi\partial_{\mu}\epsilon^{a}$ のためである から

$$\bar{\delta}\mathcal{L} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} T_{a} \phi \partial_{\mu} \epsilon^{a} = j^{\mu}_{a} \partial_{\mu} \epsilon^{a}$$
(40)

 $\partial_{\mu}\epsilon^{a}$ の係数として j^{μ}_{a} が読み取れる。

2. $\Delta x^{\mu} = \xi^{\mu}_{a} \epsilon^{a} \neq 0$ の場合:

恒等式(39)から出発。 $\partial_{\mu}j^{\mu}$ を $\partial_{\mu}\epsilon^{a}$ を含む部分と含まない部分に次のように分けられる:

$$\partial_{\mu}j^{\mu} = \partial_{\mu}j^{\mu}_{a}\epsilon^{a} + j^{\mu}_{a}\partial_{\mu}\epsilon^{a}$$
(41)

ここで j_a^μ は(35)で与えた保存カレント

$$j_{a}^{\mu} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} (T_{a} \phi - \xi_{a}^{\nu} \partial_{\nu} \phi) + \xi_{a}^{\mu} \mathcal{L}$$
(42)

qft1-4-16

基本方程式 $(\delta \mathcal{L}/\delta \phi) \overline{\delta} \phi + \partial_{\mu} j^{\mu}_{a} \epsilon^{a} = 0$ を用いると、(39) は次のように 書き換えられる

$$\bar{\delta}\mathcal{L} = \frac{\delta\mathcal{L}}{\delta\phi}\bar{\delta}\phi + \underbrace{\partial_{\mu}j_{a}^{\mu}\epsilon^{a} + j_{a}^{\mu}\partial_{\mu}\epsilon^{a}}_{\partial_{\mu}j_{a}^{\mu}\epsilon^{a} + j_{a}^{\mu}\partial_{\mu}\epsilon^{a}} - \partial_{\mu}(\Delta x^{\mu}\mathcal{L})$$

$$= \frac{j_{a}^{\mu}\partial_{\mu}\epsilon^{a} - \partial_{\mu}(\Delta x^{\mu}\mathcal{L})}{\xi_{a}^{\mu}\epsilon^{a}(x)}$$

$$= \frac{\partial\mathcal{L}}{\partial\partial_{\mu}\phi}(T_{a}\phi - \xi_{a}^{\nu}\partial_{\nu}\phi)\partial_{\mu}\epsilon^{a} + \xi_{a}^{\mu}\mathcal{L}\partial_{\mu}\epsilon^{a} - \partial_{\mu}(\xi_{a}^{\mu}\epsilon^{a}\mathcal{L})$$

$$= \frac{\partial\mathcal{L}}{\partial\partial_{\mu}\phi}(T_{a}\phi - \xi_{a}^{\nu}\partial_{\nu}\phi)\partial_{\mu}\epsilon^{a} - \partial_{\mu}(\xi_{a}^{\mu}\mathcal{L})\epsilon^{a}$$

$$= j_{a}^{\mu,0}\partial_{\mu}\epsilon^{a} - \partial_{\mu}j_{a}^{\mu,1}\epsilon^{a} \qquad (43)$$

まとめ: 保存カレント j_a^μ は $\overline{\delta}\mathcal{L}$ の $\partial_\mu\epsilon^a$ および ϵ^a に比例する部分を読み取ることにより次のように求められる(符号に注意)

$$\overline{\delta}\mathcal{L} = j_a^{\mu,0} \partial_\mu \epsilon^a - \partial_\mu j_a^{\mu,1} \epsilon^a \qquad (44)$$
$$j_a^\mu = j_a^{\mu,0} + j_a^{\mu,1} \qquad (45)$$

□ 適用例:1粒子の場合のエネルギー保存:

$$L = \frac{1}{2}\dot{x}^2 - V(x), \qquad \overline{\delta}x = -\epsilon\dot{x} \qquad (46)$$

ここで $\epsilon \Rightarrow \epsilon(t)$ として $\overline{\delta}\mathcal{L}$ を計算

$$\bar{\delta}L = \frac{\partial L}{\partial \dot{x}}\bar{\delta}\dot{x} + \frac{\partial L}{\partial x}\bar{\delta}x = \dot{x}\frac{d}{dt}(-\epsilon\dot{x}) + \epsilon\dot{x}\frac{dV}{dx} = -\dot{\epsilon}\dot{x}^2 - \epsilon\dot{x}\ddot{x} + \epsilon\dot{x}\frac{dV}{dx}$$
$$= \dot{\epsilon}(\underbrace{-\dot{x}^2}_{j^0}) - \epsilon\frac{d}{dt}\left(\underbrace{\frac{1}{2}\dot{x}^2 - V}_{j^1}\right)$$
(47)

従って、求める保存カレントは $j^0+j^1=-rac{1}{2}\dot{x}^2-V=-H$ 。

□ Noetherの第二定理:

局所ゲージ変換に対して不変な理論に基本定理を適用 <u>ゲージ変換の形</u>: $\epsilon^a(x)$ を局所パラメーターとして、一般的な次の形のtotal variation を扱う。

$$\Delta \phi = A_a(x,\phi,\partial\phi)\epsilon^a(x) + B^{\mu}_a(x,\phi,\partial\phi)\partial_{\mu}\epsilon^a(x)$$
(48)

$$\Delta x^{\mu} = C^{\mu}_{a}(x)\epsilon^{a}(x) \tag{49}$$

Lie 変分は $\overline{\delta}\phi = \Delta \phi - \Delta x^{\mu} \partial_{\mu} \phi_{\circ}$ これは $\Delta \phi$ と同タイプなので、次のように書く

$$\overline{\delta}\phi = a_a(x,\phi,\partial\phi)\epsilon^a(x) + b_a^\mu(x,\phi,\partial\phi)\partial_\mu\epsilon^a(x) \quad (50)$$
$$a_a = A_a - \partial_\mu\phi C_a^\mu, \quad b_a^\mu = B_a^\mu \quad (51)$$

- 通常の(非可換)ゲージ変換は($\Delta x^{\mu} = 0$ とした) このタイプ
- 特にゲージ場の変換に対しては B^{μ}_{a} 項はゼロでない。

例: Maxwell 理論

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}, \qquad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \qquad (52)$$

ゲージ変換
$$\bar{\delta}A_{\mu} = \partial_{\mu}\Lambda$$
 (53)

$$\Leftrightarrow \quad b^{\nu}_{\mu} = \delta^{\nu}_{\mu}, \quad \epsilon = \Lambda, \quad a = 0 \tag{54}$$

基本定理の適用

$$\partial_{\mu}j^{\mu} + \frac{\delta\mathcal{L}}{\delta\phi}(a_{a}\epsilon^{a} + b^{\mu}_{a}\partial_{\mu}\epsilon^{a}) = 0$$
(55)

$$j^{\mu} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} (a_a \epsilon^a + b_a^{\rho} \partial_{\rho} \epsilon^a) + \Delta x^{\mu} \mathcal{L}$$
(56)

● 運動方程式を満たす配位に対して、*j^µ*が保存。

但し、 j^{μ} はまだ local parameter $\epsilon^{a}(x)$ を含んでいる。

• $\epsilon^{a}(x)$ の特別な場合として、xに依らないglobalな変換もある。その場合には、上記の式で $\partial_{\mu}\epsilon^{a} = 0$ とした関係式が成り立つ。

基本定理の有用な帰結

1. Local な恒等式の導出

(55)の第3項を書き換える:

$$\frac{\delta \mathcal{L}}{\delta \phi} b^{\mu}_{a} \partial_{\mu} \epsilon^{a} = \partial_{\mu} \left(\frac{\delta \mathcal{L}}{\delta \phi} b^{\mu}_{a} \epsilon^{a} \right) - \partial_{\mu} \frac{\delta \mathcal{L}}{\delta \phi} b^{\mu}_{a} \epsilon^{a} - \frac{\delta \mathcal{L}}{\delta \phi} \epsilon^{a} \partial_{\mu} b^{\mu}_{a} \qquad (57)$$

⇒ (55) は次の形になる:

$$\left(a_a\frac{\delta\mathcal{L}}{\delta\phi} - \partial_\mu\left(\frac{\delta\mathcal{L}}{\delta\phi}b_a^\mu\right)\right)\epsilon^a = -\partial_\mu\left(j^\mu + b_a^\mu\epsilon^a\frac{\delta\mathcal{L}}{\delta\phi}\right) \quad (58)$$

右辺はtotal divergence。

領域 Ω の boundary $\partial \Omega$ 上で $\epsilon^a(x) = \partial_\mu \epsilon^a(x) = 0$ となるように parameter $\epsilon^a(x)$ をとる。 \Rightarrow (56)より境界上で $j^\mu = 0$

(58)をΩで積分すると、右辺はゼロとなり

$$\int_{\Omega} [dx] \left(a_a \frac{\delta \mathcal{L}}{\delta \phi} - \partial_{\mu} \left(\frac{\delta \mathcal{L}}{\delta \phi} b_a^{\mu} \right) \right) \epsilon^a = 0$$
(59)

 Ω の内部では $\epsilon^{a}(x)$ はまだ任意 \Rightarrow 次のlocalな関係式を得る:

$$\partial_{\mu} \left(\frac{\delta \mathcal{L}}{\delta \phi} b^{\mu}_{a} \right) = a_{a} \frac{\delta \mathcal{L}}{\delta \phi}$$
 (60)

- 運動方程式は用いていないので恒等式
- これは "covariant conservation" の形に書き換え可能。 b_{a}^{μ} の逆行列 h_{μ}^{b} を $b_{a}^{\mu}h_{\mu}^{b} = \delta_{a}^{b}$ と定義 $a_{a} = a_{b}\delta_{a}^{b} = (a_{b}h_{\mu}^{b})b_{a}^{\mu} \Rightarrow (60)$ は次の形に書ける: $\nabla_{\mu}\left(b_{a}^{\mu}\frac{\delta\mathcal{L}}{\delta\phi}\right) = 0, \quad \nabla_{\mu} \equiv \partial_{\mu} - a_{b}h_{\mu}^{b}$ (61)

注: "covariant conservation"の式は、恒等式を書き換えただけであり、物理 量の保存を表しているのではない。

例1. Maxwell理論の場合: (60)を書き下すと

 $\partial_{\rho} \left(\delta^{\rho}_{\nu} \partial_{\mu} F^{\mu\nu} \right) = 0 \quad \Leftrightarrow \quad \partial_{\mu} \partial_{\nu} F^{\mu\nu} = 0 \tag{62}$

これは確かに恒等式。

例2. Scalar 電気力学の場合: $\phi = \text{complex scalar}$ Lagrangian

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} (D_{\mu}\phi)^* D^{\mu}\phi$$
 (63)

$$D_{\mu} \equiv \partial_{\mu} + ieA_{\mu} \tag{64}$$

ゲージ変換

$$\bar{\delta}A_{\mu} = \partial_{\mu}\Lambda, \qquad \bar{\delta}\phi = -ie\Lambda\phi$$
 (65)

qft1-4-23

⇔ ゲージ変換の parameters

$$a_{\mu} = 0, \qquad b_{\mu}^{\nu} = \delta_{\mu}^{\nu}$$
 (66)

$$a_{\phi} = -ie\phi, \qquad b_{\phi}^{\nu} = 0$$
 (67)

$$a_{\phi^*} = ie\phi^*, \qquad b_{\phi^*}^{\nu} = 0$$
 (68)

Lagrange微分

$$\frac{\delta \mathcal{L}}{\delta A^{\nu}} = \partial^{\mu} F_{\mu\nu} - J_{\nu} \tag{69}$$

ここで
$$J_{\nu} = \frac{i}{2} e(\phi^* \overleftrightarrow{\partial_{\nu}} \phi) - e^2 A_{\nu} \phi^* \phi$$
 (70)

$$\frac{\delta \mathcal{L}}{\delta \phi} = -\frac{1}{2} (D^{\mu} D_{\mu} \phi)^*$$
(71)

$$\frac{\delta \mathcal{L}}{\delta \phi^*} = -\frac{1}{2} (D^{\mu} D_{\mu} \phi)$$
(72)

(60)式の具体形:

$$0 = -ie\phi \frac{\delta \mathcal{L}}{\delta \phi} + ie\phi^* \frac{\delta \mathcal{L}}{\delta \phi^*} - \partial^{\nu} \frac{\delta \mathcal{L}}{\delta A^{\nu}}$$

$$= -ie\phi \left(-\frac{1}{2} (D^{\mu} D_{\mu} \phi)^* \right) + ie\phi^* \left(-\frac{1}{2} (D^{\mu} D_{\mu} \phi) \right)$$

$$- \left(\partial^{\mu} \partial^{\nu} F_{\mu\nu} - \partial^{\nu} J_{\nu} \right)$$
(73)

● これが実際恒等式を与えていることは容易に確かめることができる。

- 恒等式 $\partial^{\mu}\partial^{\nu}F_{\mu\nu} = 0$ を適用したあと、 ϕ の運動方程式 $D^{\mu}D_{\mu}\phi = 0$ を課す \Rightarrow カレントの保存則 $\partial^{\nu}J_{\nu} = 0$
- J_{ν} はglobalな変換に対する不変性から導かれる Noether current に一致

2. 基本定理のさらなる帰結

Localな恒等式(60)を基本定理(58)に代入。⇒ (58)の左辺=0 ⇒ 保存則

$$0 = \partial_{\mu} \left(j^{\mu} + b^{\mu}_{a} \epsilon^{a} \frac{\delta \mathcal{L}}{\delta \phi} \right)$$

$$= \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} (a_{a} \epsilon^{a} + b^{\nu}_{a} \partial_{\nu} \epsilon^{a}) + C^{\mu}_{a} \epsilon^{a} \mathcal{L} + b^{\mu}_{a} \epsilon^{a} \frac{\delta \mathcal{L}}{\delta \phi} \right)$$

$$= \partial_{\mu} \left(J^{\mu}_{a} \epsilon^{a} + \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} b^{\nu}_{a} \partial_{\nu} \epsilon^{a} + b^{\mu}_{a} \epsilon^{a} \frac{\delta \mathcal{L}}{\delta \phi} \right)$$
(74)

ここで

$$J_a^{\mu} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} a_a + C_a^{\mu} \mathcal{L} = 通常の \text{ Noether }$$
カレント (75)

さらに運動方程式 $\delta \mathcal{L}/\delta \phi = 0$ を課すと $0 = \partial_{\mu} \left(J_{a}^{\mu} \epsilon^{a} + \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} b_{a}^{\nu} \partial_{\nu} \epsilon^{a} \right)$ $= (\partial_{\mu} J_{a}^{\mu}) \epsilon^{a} + \left(J_{a}^{\mu} + \partial_{\nu} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\nu} \phi} b_{a}^{\mu} \right) \right) \partial_{\mu} \epsilon^{a} + \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} b_{a}^{\nu} \partial_{\mu} \partial_{\nu} \epsilon^{a}$ (76)

 $\epsilon^{a}(x)$ は任意 \Rightarrow 3つの関係式が同時に得られる:

(iii)の反対称テンソルを

$$\mathcal{F}_{a}^{\mu\nu} \equiv \frac{\partial \mathcal{L}}{\partial \partial_{\nu} \phi} b_{a}^{\mu} \tag{81}$$

と置くと(*ii*)は

$$J_a^{\mu} = -\partial_{\nu} \mathcal{F}_a^{\mu\nu} \tag{82}$$

 $\mathcal{F}_{a}^{\mu
u}$ の反対称性 \Rightarrow (i)は自明。

まとめ:

Local 対称性の場合には global 対称性によって保存するカレント J_a^{μ} は必ず反対称テンソル ($\partial \mathcal{L}/\partial \partial_{\nu}\phi$) b_a^{μ} の divergence で書け、自明に 保存する形になる。 ⇒ Gaussの定理により保存 charge は2次元表面積分で書ける: $Q_a = \int_V d^3x J_a^0 = -\int d^3x_V \partial_i \mathcal{F}_a^{i0} = \int_{\partial V} dS \hat{n}_i \mathcal{F}_a^{0i}$ (83) ⇔ Gaussの法則の一般化
演習 1. Maxwell 理論および scalar 電気力学の場合に、具体的にこれを確 かめよ。

4.2 Schwinger の量子作用原理

- 古典解析力学のHamilton-Jacobi形式の量子版。
- 量子化の規則と量子的なネーター(Noether)の定理を統一的に得ることができる。

4.2.1 粒子系に対する量子作用原理

□ 古典力学の Hamilton-Jacobi形式の復習:

 $q_k(t)_{k=1\sim n}$: n粒子に対する一般化された座標 奇跡Cに沿った古典的な作用

$$S_{21}[C] = \int_{t_1}^{t_2} dt L(q_k, \dot{q}_k, t)$$
 (84)

• <u>端点を固定して</u>変分 δq_k を行う \Rightarrow 運動方程式

$$\frac{\partial L}{\partial q_k} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} = 0$$
(85)

● 端点の変化も許して、二つの隣接する軌跡*C*と*C*′を考える

$$egin{array}{lll} C: & q_k(t)\,, & t_1 \leq t \leq t_2 \ C': & q_k'(t) = q_k(t) + \delta q_k(t)\,, & t_1' \leq t \leq t_2' \ & t_i' = t_i + \Delta t_i\,, & i = 1,2 \end{array}$$

 Δt_i 及び δq_k はどちらも無限小。

端点の差を次のように定義:

$$\Delta q_k(t_i) \equiv q'_k(t'_i) - q_k(t_i)$$

= $q'_k(t'_i) - [q_k(t_i) + \delta q_k(t_i)] + \delta q_k(t_i)$
= $q'_k(t'_i) - q'_k(t_i) + \delta q_k(t_i)$
= $\dot{q'}_k \Delta t_i + \delta q_k(t_i) \simeq \dot{q}_k \Delta t_i + \delta q_k(t_i)$ (86)

 $C \geq C'$ に沿った作用を比較する。C'に沿った作用は、

$$S_{21}[C'] = \int_{t'_1}^{t'_2} dt L' = \int_{t'_1}^{t_1} + \int_{t_1}^{t_2} + \int_{t_2}^{t'_2}$$
 $earrow L' \equiv L(q'_k, \dot{q'}_k, t)$

従って、無限小の量の一次までのオーダーで、作用の差は

$$\therefore \qquad \Delta S_{21} = S_{21}[C'] - S_{21}[C] = \int_{t_1}^{t_2} (L' - L) dt + [L\Delta t]_1^2 \\ = \int_{t_1}^{t_2} \left\{ \frac{\partial L}{\partial q_k} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} \right\} \delta q_k dt + \underbrace{\left[\frac{\partial L}{\partial \dot{q}_k} \delta q_k + L\Delta t \right]_1^2}_{\text{$\bar{k} \bar{n} \bar{n} \bar{n}} }$$

表面項を(86)を用いて書き直し、運動量とハミルトニアンの定義を使うと

$$\Delta S_{21} = \int_{t_1}^{t_2} \left\{ \frac{\partial L}{\partial q_k} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} \right\} \delta q_k dt + \left[\frac{\partial L}{\partial \dot{q}_k} \Delta q_k - \left(\frac{\partial L}{\partial \dot{q}_k} \dot{q}_k - L \right) \Delta t \right]_1^2$$
$$= \int_{t_1}^{t_2} \left\{ \frac{\partial L}{\partial q_k} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} \right\} \delta q_k dt + \left[\mathbf{p}_k \Delta q_k - \mathbf{H} \Delta t \right]_1^2$$
(87)

従って、運動方程式を満たす軌跡に対して

$$\Delta S_{21} = \left[p_k \Delta q_k - H \Delta t \right]_1^2$$
 (88)

端点1を固定して、Sを端点2の量の関数と見ると、これより古典力学の Hamilton-Jacobi方程式を得る。

(i)
$$\frac{\partial S}{\partial q_k} = p_k$$
, (ii) $\frac{\partial S}{\partial t} + H = 0$ (89)

□ 量子論に対する Schwinger の原理

上記の考察を量子力学の場合に拡張

◆ 古典的な "軌跡" ⇒ 遷移振幅

◆ 時間並進、空間並進ならびに空間回転による軌跡の変化 ⇒→ 状態ベク トルのユニタリー変換 $U = e^{iG}$

無限小変換

$$|\psi'\rangle = U|\psi\rangle \simeq (1+iG)|\psi\rangle$$

$$\therefore \quad \Delta|\psi\rangle = iG|\psi\rangle, \quad \Delta\langle\psi| = \langle\psi|(-iG) \qquad (90)$$

遷移振幅の変化

$$\begin{aligned} \Delta \langle q_{k}(t_{2}), t_{2} | q_{k}(t_{1}), t_{1} \rangle \\ &= (\Delta \langle q_{k}(t_{2}), t_{2} |) | q_{k}(t_{1}), t_{1} \rangle + \langle q_{k}(t_{2}), t_{2} | (\Delta | q_{k}(t_{1}), t_{1} \rangle) \\ &= - \langle q_{k}(t_{2}), t_{2} | i G(t_{2}) | q_{k}(t_{1}), t_{1} \rangle + \langle q_{k}(t_{2}), t_{2} | i G(t_{1}) | q_{k}(t_{1}), t_{1} \rangle \\ &= \langle q_{k}(t_{2}), t_{2} | \frac{1}{i} (G(t_{2}) - G(t_{1})) | q_{k}(t_{1}), t_{1} \rangle \end{aligned}$$
(91)

Gの端点での差 \simeq 表面項 ΔS_{21} $<math>\downarrow$

Schwingerの作用原理:

作用Sをハイゼンベルグ演算子 $q_k(t)$ の量子的汎関数と見なし、次の基本的関係式を原理として導入:

$$\Delta S_{21} = G(t_2) - G(t_1)$$
 (92)

ここで ΔS_{21} は(87)に現れたもの。 (92)の右辺はエルミート \Rightarrow 作用もエルミート

● 通常の、[p,q] = -iの量子化条件の替わりにこれを原理として用いる

Schwingerの作用原理の帰結

1. 量子論的運動方程式

(87) で与えられる ΔS_{21} の形と比較

体積積分の部分がゼロ ⇔ 量子論的な運動方程式が古典的な形に一致 することを含んでいる²

$$\frac{\partial L}{\partial q_k} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} = 0$$
(93)

2. 量子化の規則とSchrödinger方程式
 運動方程式が満たされる物理的な場合には、上記の原理は、次の演算子の間の関係式に帰着:

$$G(t) = p_k \Delta q_k - H \Delta t$$
 (94)

²但し、量子論では演算子の順序が問題になるので、ここでは適当な順序が存在することを仮定している。

Gの定義に代入すると

$$\Delta |q_k, t\rangle = iG(t) |q_k, t\rangle = i(p_k \Delta q_k - H \Delta t) |q_k, t\rangle$$
(95)

⇒ 量子化の規則とSchrödinger 方程式

$$\frac{1}{i} \frac{\partial}{\partial q_k} |q_k, t\rangle = p_k |q_k, t\rangle \qquad (96)$$
$$\frac{i}{\partial t} |q_k, t\rangle = H |q_k, t\rangle \qquad (97)$$

古典力学のHamilton-Jacobi 形式の方程式の量子版になっている

3. 演算子の変換と正準量子化の規則

状態ベクトルのユニタリー変換に対応して、量子的演算子*O*は次のように変換される:

$$\mathcal{O}' \,=\, U \mathcal{O} U^\dagger = (1+iG) \mathcal{O} (1-iG) \simeq \mathcal{O} + i[G,\mathcal{O}]$$

$$\Delta \mathcal{O} = i[G, \mathcal{O}]$$
 (98)

↓ 正準量子化の規則の導出

 $\mathcal{O} = q_j$ 、 $\Delta t = 0$ 、 $\Delta q_j = c$ 数、の場合を考える。 $\Rightarrow G = p_k \Delta q_k$ (98)は次の形をとる:

$$\Delta q_j = i[p_k \Delta q_k, q_j] = i[p_k, q_j] \Delta q_k$$
(99)

任意の変分 Δq_j に対して成り立つためには、

$$i[p_k, q_j] = \delta_{kj}$$
 (100)

4. 対称変換の生成子としてのG

② 変換で作用が不変 $\Delta S_{21}=0 \stackrel{(92) ext{td}}{\Longleftrightarrow} G(t_2)=G(t_1):$ G は保存量
同時に、(98) \Rightarrow G は対称変換の生成子 \Leftrightarrow 量子的Noetherの定理

例: 回転対称性

3次元空間での、 $q_k = x_k$ に対するi軸まわりの回転 $\lambda =$ 無限小回転のパラメーター

$$x'_{k} = x_{k} + \lambda \epsilon_{ijk} x_{j}$$
$$\Delta x_{k} = \lambda \epsilon_{ijk} x_{j}$$
(101)

作用がこの変換で不変 ⇒ 次の量は保存量かつ回転の生成子:

$$G \equiv \lambda J_i = p_k \Delta x_k = \lambda p_k \epsilon_{ijk} x_j = \lambda \epsilon_{ijk} x_j p_k$$
 (102)

これは良く知られた角運動量演算子 //

•••

5. Schwingerの作用原理の一般性

この原理はラグランジアンの形に依らない。⇒相互作用がある場合に も適用可能。

4.2.2 量子作用原理の場の理論への適用

場の集合: $\phi_a(x)$

場の配位は $space-likeな面 \Sigma 上で指定。場の動力学は <math>\Sigma$ に垂直な"時間"方向への発展として記述。(Euclideanでも良い)

仮定: 場は空間的な無限遠で十分に早くゼロにいく → 表面項は効かず、 部分積分が自由にできる。

二つのタイプの変分:

1. 座標の変化

$$x^{\prime \mu} = x^{\mu} + \Delta x^{\mu} \tag{103}$$

2. 場のLie 変分

$$\phi'_a(x) = \phi_a(x) + \delta \phi_a(x) \tag{104}$$

場のLie変分は面Σ上で定義されたエルミートな演算子 $G[\Sigma]$ で生成される: $\delta\phi_a(x) = i[G[\Sigma], \phi_a(x)]$ (105)

 $m{R}={
m space-like}$ な面 Σ_1 及び Σ_2 を境界とする領域 $m{R}'=m{R}$ を座標変換(103)で移したイメージ

Noetherの基本定理の手順で作用の変化を計算

$$\Delta S = \int_{R} \left\{ \left(\frac{\partial \mathcal{L}}{\partial \phi_{a}} - \partial_{\mu} \frac{\mathcal{L}}{\partial \partial_{\mu} \phi_{a}} \right) \delta \phi_{a} + \partial_{\mu} \mathcal{J}^{\mu} \right\} d^{n} x \qquad (106)$$
$$\mathcal{J}^{\mu} \equiv \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi_{a}} \delta \phi_{a} + \mathcal{L} \Delta x^{\mu} = (\text{quantum}) \text{ current} \qquad (107)$$

qft1-4-41

Gauss の 定理

$$\int_{R} \partial_{\mu} \mathcal{J}^{\mu} d^{n} x = \int_{\Sigma_{2}} \mathcal{J}^{\mu} d\Sigma_{\mu} - \int_{\Sigma_{1}} \mathcal{J}^{\mu} d\Sigma_{\mu}$$
(108)

場のtotal variation $\Delta \phi_a$

$$\Delta\phi_a(x) \equiv \phi_a'(x') - \phi_a(x) = \partial_\mu \phi_a(x) \Delta x^\mu + \delta \phi_a(x) \quad (109)$$

これを用いてカレントを書き換える

$$\mathcal{J}^{\mu} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi_{a}} (\Delta \phi_{a} - \partial_{\nu} \phi_{a} \Delta x^{\nu}) + \mathcal{L} \Delta x^{\mu}$$
$$= \pi^{\mu}_{a} \Delta \phi_{a} - (\pi^{\mu}_{a} \partial^{\nu} \phi_{a} - \eta^{\mu\nu} \mathcal{L}) \Delta x_{\nu}$$
$$= \pi^{\mu}_{a} \Delta \phi_{a} - T^{\mu\nu} \Delta x_{\nu}$$
(110)

ここで

$$\pi^{\mu}_{a} \equiv \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi_{a}} \tag{111}$$

$$T^{\mu\nu} \equiv \pi^{\mu}_{a} \partial^{\nu} \phi_{a} - \eta^{\mu\nu} \mathcal{L} = \text{energy-momentum tensor}$$
 (112)
= 粒子の場合のHamiltonianの一般化

Schwingerの量子作用原理を適用:

$$\Delta S = G[\Sigma_2] - G[\Sigma_1] \tag{113}$$
$$\Downarrow$$

$$\frac{\partial \mathcal{L}}{\partial \phi_a} - \partial_\mu \frac{\mathcal{L}}{\partial \partial_\mu \phi_a} = 0$$
(114)
$$G[\Sigma] = \int_{\Sigma} \mathcal{J}^\mu d\Sigma_\mu$$
(115)

$$\Box (\widehat{\Xi} \widehat{F} \widehat{D}) \text{Noether } \mathcal{O} \widehat{\Xi} \widehat{\Xi}$$
$$\Delta S = 0 \Longrightarrow G \, \text{lines } \mathbb{D} \, \mathbb{D} \, \text{lines } \mathbb{D} \, \text{lines } \mathbb{D} \, \text{lines } \mathbb{D} \,$$

特に Σ が平坦な時間一定の面の場合、保存チャージは通常の形をとる:

$$Q = \int \mathcal{J}^0 dV \tag{118}$$

□ 場の量子化の規則の導出 $\Delta x^{\mu} = 0$ (従って $\Delta \phi_a = \delta \phi_a$)の場合を考える。 $\Rightarrow \mathcal{J}^{\mu} = \pi^{\mu}_{a} \Delta \phi_{a}$. 作用原理から³ $\Delta \phi_a(\vec{x},t) = i \left[\underbrace{\int d^3 x' \pi_b^0(\vec{x'},t) \Delta \phi_b(\vec{x'},t)}_{C}, \phi_a(\vec{x},t) \right]$ (119)

ボゾンの場合: 交換子 – フェルミオンの場合:反交換子+ を区別

$$egin{aligned} \Delta\phi_a(ec{x},t) &= i\int d^3x'\pi_b^0(ec{x'},t) \Big[\Delta\phi_b(ec{x'},t),\phi_a(ec{x},t)\Big]_{\mp} \ &\pm i\int d^3x' \Big[\pi_b^0(ec{x'},t),\phi_a(ec{x},t)\Big]_{\mp}\Delta\phi_b(ec{x'},t) \end{aligned}$$

³二点が同一のspace-likeな面に乗っていればよい。ここではその面を時間が一定の面に とっている。

これを満たすには

(*)
$$\left[\Delta\phi_b(\vec{x'},t),\phi_a(\vec{x},t)\right]_{\mp} = 0$$
 (120)

$$i \Big[\pi_b^0(\vec{x'}, t), \phi_a(\vec{x}, t) \Big]_{\mp} = \delta_{ab} \delta^3(\vec{x} - \vec{x'})$$
(121)

添え字 $a \ge b$ は任意。 \Rightarrow (*)より

$$0 = \left[\Delta \phi_b(\vec{x'}, t), \phi_a(\vec{x}, t) \right]_{\mp} + \left[\phi_b(\vec{x'}, t), \Delta \phi_a(\vec{x}, t) \right]_{\mp}$$
$$= \Delta \left[\phi_b(\vec{x'}, t), \phi_a(\vec{x}, t) \right]_{\mp}$$
(122)

これが任意の変分に対して成り立つためには

$$\left[\phi_b(\vec{x'},t),\phi_a(\vec{x},t)\right]_{\mp} = 0 \tag{123}$$

 $\Delta \pi^0_a$ に対して同様の解析を繰り返すと、

$$\left[\pi_b^0(\vec{x'},t),\pi_a^0(\vec{x},t)\right] = 0 \tag{124}$$

□ Global な内部対称性のある場合への適用

Global な U(1) 対称性を持つ系を考える。

 ϕ_a を複素場とし、作用が次のglobalな位相の変換に対して不変とする:

$$\phi_a(x) \to \phi'_a(x) = e^{i\lambda}\phi_a(x), \quad \lambda = 実定数$$
 (125)
∴ $\Delta\phi_a(x) = i\lambda\phi_a(x)$ (126)

保存生成子 (チャージ)は

$$G = \int d^3x \pi_a^0 \Delta \phi_a(x) = i\lambda \int d^3x \pi_a^0 \phi_a \equiv i\lambda Q \qquad (127)$$

 $\Rightarrow \pi_a^0$ は ϕ_a と逆のチャージを持つ

$$\Delta \pi_a^0(x) = i [G, \pi_a^0(x)] = -i\lambda \pi^0(x)$$
(128)

重要な点: この変換は、量子化の規則を導いた時に用いた一般的な(内 部)変分の特別な場合

 \Rightarrow この量子的な変換則は<u>自動的に量子化の規則と整合的になっている</u>。 演習 2. このことを具体的に確かめよ。さらに、これをnon-abelian global 変換 $\phi'_a = (e^{i\vec{ heta}\cdot \vec{T}})_{ab}\phi_b$ の場合に拡張せよ。

5 自由な量子スカラー場と2点関数

♦ 自由なスカラー場の量子化の整理

◆ 摂動論で基本となる幾つかの2 点関数の構成

5.1 スカラー場の作用

エルミートなスカラー場の典型的なLagrangian:

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi \partial^{\mu} \phi - m^2 \phi^2) - V(\phi)$$
(1)

$$= \frac{1}{2} (\dot{\phi}^2 - (\vec{\nabla}\phi)^2 - m^2 \phi^2) - V(\phi)$$
(2)

共役運動量とHamiltonian density

$$\boldsymbol{\pi} = \dot{\boldsymbol{\phi}} \tag{3}$$

$$\mathcal{H} = \pi \dot{\phi} - \mathcal{L} = \frac{1}{2} (\pi^2 + (\vec{\nabla}\phi)^2 + m^2 \phi^2) + V(\phi)$$
(4)

場の同時刻交換関係(ETCR): Schwingerの作用原理 ⇒ 相互作用をする場 合にも次の形を採用すべきである

$$[\phi(\vec{x},t),\pi(\vec{y},t)] = i\delta(\vec{x}-\vec{y}), \quad \text{rest} = 0$$
 (5)

運動方程式

$$(\partial^2 + m^2)\phi + \frac{dV(\phi)}{d\phi} = 0$$
(6)

- 相互作用があるため、この方程式の完全解を厳密に求めることはでき ない⇒ ETCRを物理的なエネルギー運動量の固有モードの生成消滅演算子 で実現することは困難。
- 相互作用が弱い領域では、 $V(\phi)$ を自由場からの摂動として取り扱うことができる。

実際は、相互作用自体のために、結合定数がエネルギースケールによって 変化

⇒ 摂動が良い領域は実はその計算をして見たあとで初めて明らかになる ことに注意。(cf.QCDの例) 5.2 自由なスカラー場の量子化

5.2.1 Fourier モード展開

自由な Klein-Gordon 方程式は ϕ について線形 \Rightarrow 完全な固有振動モード展開可能

□ 3次元 Fourier 変換を用いる方法:

 $\phi(\vec{x},t)$ を3次元Fourier変換

$$\phi(\vec{x},t) = \int \frac{d^3k}{(2\pi)^{3/2}} \phi(\vec{k},t) e^{i\vec{k}\cdot\vec{x}}$$
(7)

KG方程式に代入 $\Rightarrow \phi(ec{k},t)$ の一般解が求まる:

$$\frac{d^2\phi(\vec{k},t)}{dt^2} + E_k^2\phi(\vec{k},t) = 0$$

$$E_k \equiv \sqrt{\vec{k}^2 + m^2}$$

$$\phi(\vec{k},t) = \phi_+(\vec{k})e^{-iE_kt} + \phi_-(\vec{k})e^{iE_kt}$$
(8)

$\phi(ec{x},t)$ はエルミート $\Leftrightarrow \phi(ec{k},t)^\dagger = \phi(-ec{k},t)$ これより

$$egin{aligned} &\phi_-(ec{k})^\dagger \,=\, \phi_+(-ec{k}) \ & & \phi(ec{x},t) \,=\, \int rac{d^3k}{(2\pi)^{3/2}} \left(\phi_+(ec{k}) e^{-iE_kt+iec{k}\cdotec{x}} + \phi_+(ec{k})^\dagger e^{iE_kt-iec{k}\cdotec{x}}
ight) \end{aligned}$$

 $\phi_+(ec{k})$ をrescaleして次の量を定義:

$$a(ec{k}) \equiv \sqrt{2E_k}\phi_+(ec{k})$$
 (9)

すると

$$\phi(x) = \phi^{(+)}(x) + \phi^{(-)}(x)$$
(10)
$$\phi^{(+)}(x) = \int d^3k f_k(x) a(\vec{k}), \quad \phi^{(-)}(x) = \phi^{(+)}(x)^{\dagger}$$
(11)

$$f_k(x) \equiv \frac{e^{-ik \cdot x}}{\sqrt{(2\pi)^3 2E_k}}$$
(12)
$$k \cdot x \equiv E_k t - \vec{k} \cdot \vec{x}$$
(13)

この関数は以下で基本的な役割を果たす。

□ 4次元 Fourier 変換を用いる方法:

明白にローレンツ共変な形の取り扱い: 4次元 Fourier 変換を用いる

$$\phi(x) = \int \frac{d^4k}{(2\pi)^{3/2}} \tilde{\phi}(k) e^{-ikx}$$
(14)

ここで、 $kx\equiv k_{\mu}x^{\mu}=k^{0}x^{0}-ec{k}\cdotec{x}$ この段階では k^{0} は $ec{k}$ と独立。

KG方程式に代入

$$\int d^4k(-k^2+m^2)\tilde{\phi}(k)e^{-ikx} = 0$$

$$\therefore \qquad (k^2-m^2)\tilde{\phi}(k) = 0 \quad \Leftarrow e^{-ikx}$$
の完全性 (15)

$$k^2-m^2 \neq 0 \Rightarrow \tilde{\phi}(k) = 0$$

$$k^2-m^2 = 0 \Rightarrow \tilde{\phi}(k)$$
はゼロでなくても良い。
解は

$$\tilde{\phi}(k) = \frac{\delta(k^2 - m^2)\chi(k)}{\chi(k)}$$
(16)
 $\chi(k) = 任意、但し \quad \chi(-k)^{\dagger} = \chi(k)$

有用な公式: ($\leftarrow f(x)$ をそのゼロ点のまわりで展開し $\delta(ax) = \delta(x)/|a|$ を用いる)

$$\delta(f(x)) = \sum_{\substack{y \\ f(y)=0}} \frac{\delta(x-y)}{\left|\frac{df}{dy}\right|} \quad (17)$$

この公式より

$$\delta(k^2 - m^2) = \delta((k^0)^2 - (\vec{k}^2 + m^2)) = \delta((k^0)^2 - E_k^2)$$

= $\frac{1}{2E_k} \left(\delta(k^0 - E_k) + \delta(k^0 + E_k) \right)$ (18)

(14)に代入し、*k*⁰積分を実行

$$\begin{split} \phi(x) &= \int \frac{d^{3}k}{(2\pi)^{3/2} 2E_{k}} \int dk^{0} \left(\delta(k^{0} - E_{k}) + \delta(k^{0} + E_{k}) \right) \chi(k) e^{-ikx} \\ &= \int \frac{d^{3}k}{(2\pi)^{3/2} 2E_{k}} \left(\chi(E_{k}, \vec{k}) e^{-i(E_{k}t - \vec{k} \cdot \vec{x})} + \chi(-E_{k}, \vec{k}) e^{i(E_{k} + \vec{k} \cdot \vec{x})} \right) \\ &= \int \frac{d^{3}k}{(2\pi)^{3/2} 2E_{k}} \left(\chi(E_{k}, \vec{k}) e^{-i(E_{k}t - \vec{k} \cdot \vec{x})} + \chi(-E_{k}, -\vec{k}) e^{i(E_{k} - \vec{k} \cdot \vec{x})} \right) \\ &= \int \frac{d^{3}k}{(2\pi)^{3/2} 2E_{k}} \left(\chi(k) e^{-ik \cdot x} + \chi^{\dagger}(k) e^{ik \cdot x} \right) \end{split}$$
(19)

ここで、 $k = (E_k, \vec{k})$ $\chi(k) = \sqrt{2E_k} a(\vec{k})$ で $a(\vec{k})$ を導入すると、以前と同じ結果を得る。 $\Box f_k(x)$ の性質と $a(\vec{k})$ の逆解き公式: 以下の $f_k(x)$ の性質は基本的:

(i)
$$\int d^3x f_k(x) f_{k'}(x) = \frac{e^{-2iE_k t}}{2E_k} \delta(\vec{k} + \vec{k'})$$
 (20)

(*ii*)
$$\int d^3x f_k^*(x) f_{k'}(x) = \frac{1}{2E_k} \delta(\vec{k} - \vec{k'})$$
 (21)

(*iii*)
$$\int d^3x f_k^*(x) i \stackrel{\leftrightarrow}{\partial}_0 f_{k'}(x) = \delta(\vec{k} - \vec{k'})$$
 (完全性) (22)

$$(iv) \int d^3x f_k(x) i \stackrel{\leftrightarrow}{\partial}_0 f_{k'}(x) = 0$$
(23)

 $(iii) \Rightarrow \phi(x)$ から $a(\vec{k})$ を取り出せる

$$a(\vec{k}) = \int d^3x f_k^*(x) i \stackrel{\leftrightarrow}{\partial}_0 \phi(x)$$
 (24)

$$a^{\dagger}(\vec{k}) = \int d^3x f_k(x) (-i \overleftrightarrow{\partial}_0) \phi(x)$$
 (25)

 $(i) \sim (iv)$ の証明は容易。例として(iii)をチェック:

$$\int d^3x f_k^*(x) i \overleftrightarrow{\partial}_0 f_{k'}(x) = \int d^3x \frac{1}{(2\pi)^3 \sqrt{2E_k 2E_{k'}}} \left(e^{ik \cdot x} i \partial_0 e^{-ik' \cdot x} - i \partial_0 e^{ik \cdot x} e^{-ik' \cdot x} \right)$$
$$= \int d^3x \frac{1}{(2\pi)^3 \sqrt{2E_k 2E_{k'}}} (E_{k'} + E_k) e^{i(k-k') \cdot x}$$
$$= \frac{E_{k'} + E_k}{2\sqrt{E_k E_{k'}}} \delta(\vec{k} - \vec{k'}) = \delta(\vec{k} - \vec{k'})$$
(26)

$\Box a(\vec{k}) と a^{\dagger}(\vec{k}) の交換関係$

逆解き公式を使うと、基本的なETCRから $\left[a(ec{k}),a^{\dagger}(ec{k'})
ight]$ 等が計算できる:

$$\left[a(\vec{k}), a^{\dagger}(\vec{k'})\right] = \delta(\vec{k} - \vec{k'})$$
(27)

$$\left[a(\vec{k}), a(\vec{k'})\right] = \left[a^{\dagger}(\vec{k}), a^{\dagger}(\vec{k'})\right] = 0$$
(28)

演習 1. これらの交換関係をチェックせよ。

解: 最初の交換関係を示す。

$$egin{aligned} &\left[a(ec{k}),a^{\dagger}(ec{k'})
ight] \,=\, \int d^{3}x d^{3}x' \Big[f_{k}^{*}(x) \stackrel{\leftrightarrow}{\partial}_{0} \phi(x), f_{k'} \stackrel{\leftrightarrow}{\partial}_{0} \phi(x')\Big] \ &=\, \int d^{3}x d^{3}x' \big[f_{k}^{*}(x) \pi(x) - \partial_{0}f_{k}^{*}(x) \phi(x), f_{k'}(x') \pi(x') - \partial_{0}f_{k'}(x') \phi(x')ig] \ &=\, \int d^{3}x d^{3}x' \left(f_{k}^{*}(x) i \partial_{0}f_{k'}(x') i [\pi(x), \phi(x')]_{ET} \ &- f_{k'}(x') i \partial_{0}f_{k}^{*}(x) i [\pi(x'), \phi(x)]_{ET} ig) \ &=\, \int d^{3}x f_{k}^{*}i \stackrel{\leftrightarrow}{\partial}_{0} f_{k'} = \delta(ec{k} - ec{k'}) \end{aligned}$$

5.2.2 エネルギーと運動量

Noetherの定理 ⇒ 保存する4元運動量ベクトル

$$P^{\mu} = \int d^3x \left(\pi \partial^{\mu} \phi - g^{0\mu} \mathcal{L} \right)$$
(29)

エネルギーと運動量に分けて具体的に書くと

$$E = P^{0} = \int d^{3}x \frac{1}{2} \left(\dot{\phi}^{2} + (\vec{\nabla}\phi)^{2} + m^{2}\phi^{2} \right)$$
(30)

$$= \int d^3x \frac{1}{2} \left(\sum_{\mu} \partial^{\mu} \phi \partial^{\mu} \phi + m^2 \phi^2 \right)$$
(31)

$$P^{i} = \int d^{3}x \dot{\phi} \partial^{i} \phi = \int d^{3}x \partial^{0} \phi \partial^{i} \phi$$
(32)

$$Fourier モードを用いた表式
 \phi = \int d^{3}k(f_{k}a(\vec{k}) + f_{k}^{*}a^{\dagger}(\vec{k})) \, \sharp \mathcal{D}
 \partial^{\mu}\phi = \int d^{3}k(-ik^{\mu})(f_{k}(x)a(\vec{k}) - f_{k}^{*}(x)a^{\dagger}(\vec{k})) \quad (33)
 (i), (ii) を用いると次の公式を得る:

$$\int d^{3}x\partial^{\mu}\phi\partial^{\nu}\phi = -\int d^{3}kd^{3}k'k^{\mu}k'^{\nu}(f_{k}(x)a(\vec{k}) - f_{k}^{*}(x)a^{\dagger}(\vec{k}))
 \times(f_{k'}(x)a(\vec{k'}) - f_{k'}^{*}(x)a^{\dagger}(\vec{k'}))
 = -\int \frac{d^{3}k}{2E_{k}}k^{\mu}k_{\nu}\left(a(\vec{k})a(-\vec{k})e^{-2iE_{k}t} + a^{\dagger}(\vec{k})a^{\dagger}(-\vec{k})e^{2iE_{k}t}\right)
 + \int \frac{d^{3}k}{2E_{k}}k^{\mu}k^{\nu}\left(a(\vec{k})a^{\dagger}(\vec{k}) + a^{\dagger}(\vec{k})a(\vec{k})\right) \quad (34)
 m^{2}\int d^{3}x\phi(x)^{2} = \int \frac{d^{3}k}{2E_{k}}m^{2}\left(a(\vec{k})a(-\vec{k})e^{-2iE_{k}t} + a^{\dagger}(\vec{k})a^{\dagger}(-\vec{k})e^{2iE_{k}t}\right)
 + \int \frac{d^{3}k}{2E_{k}}m^{2}\left(a(\vec{k})a(-\vec{k})e^{-2iE_{k}t} + a^{\dagger}(\vec{k})a^{\dagger}(-\vec{k})e^{2iE_{k}t}\right)
 + \int \frac{d^{3}k}{2E_{k}}m^{2}\left(a(\vec{k})a^{\dagger}(\vec{k}) + a^{\dagger}(\vec{k})a(\vec{k})\right) \quad (35)$$$$

これらの公式中で $k^0 = E_k$ 。

■ エネルギー P⁰

$$-k^{\mu}k_{\mu} + m^{2} = 0 \Rightarrow aa \geq a^{\dagger}a^{\dagger}$$
部分は消える。
残りは $\sum k^{\mu}k^{\mu} + m^{2} = E_{k}^{2} + \vec{k}^{2} + m^{2} = 2E_{k}^{2}$
$$P^{0} = \int d^{3}k \frac{E_{k}}{2} \left(a(\vec{k})a^{\dagger}(\vec{k}) + a^{\dagger}(\vec{k})a(\vec{k}) \right)$$
$$= \int d^{3}k E_{k} \left(a^{\dagger}(\vec{k})a(\vec{k}) + \underbrace{\frac{1}{2}}_{\forall \Box \in \overline{\mathrm{Kph}}} \right)$$
(36)

• 運動量 \vec{P}

被積分関数は \vec{k} の奇関数 $\Rightarrow aa \& a^{\dagger}a^{\dagger}$ 部分はゼロになる。 従って

$$\vec{P} = \int d^3k \vec{k} \left(a^{\dagger}(\vec{k})a(\vec{k}) + \frac{1}{2} \right)$$
$$= \int d^3k \vec{k}a^{\dagger}(\vec{k})a(\vec{k})$$
(37)

フォノンの場合に導いた式を再現。

5.3 正規順序積

上述のエネルギー演算子のように、しばしば場の積からなる演算子は発散 を含む。

意味のある演算子 Ô: 状態空間での行列要素が有限

 $\langle \psi | \hat{\mathcal{O}} | \chi
angle =$ finite

相互作用があり理論が解けない場合、一般に状態空間がわからない ⇒ 場の積からなる有限な演算子を定義することは難しい問題

自由場の場合: Fock空間での行列要素が有限になるように場の積の順序 を定義することが可能 正規順序 (normal ordering)の概念

> $a = 消滅演算子、<math>a^{\dagger} = \pm d \pi$ 演算子 "a to the right, a^{\dagger} to the left" 記号: :で表す

例 $:aa^{\dagger}:\equiv a^{\dagger}a\,,$ $:aaa^{\dagger}a^{\dagger}:=a^{\dagger}a^{\dagger}aa$

• $\mathcal{O} = \sum_{n=1}^{\infty} a_n a_n^\dagger$ とすると、 $\langle 0 | \mathcal{O} | 0
angle$ は発散。 $\langle 0 | : \mathcal{O} : | 0
angle$ は有限

ロ 場の正規順序積 (normal ordered product) : スカラー場の分解: $\phi(x) = \underbrace{\phi^{(+)}(x)}_{\ni a(\vec{k})} + \underbrace{\phi^{(-)}(x)}_{\ni a^{\dagger}(\vec{k})}$

通常の積

$$egin{aligned} \phi(x)\phi(y) &= (\phi^{(+)}(x)+\phi^{(-)}(x))(\phi^{(+)}(y)+\phi^{(-)}(y))\ &= \phi^{(+)}(x)\phi^{(+)}(y)+\phi^{(+)}(x)\phi^{(-)}(y)\ &+ \phi^{(-)}(x)\phi^{(+)}(y)+\phi^{(-)}(x)\phi^{(-)}(y) \end{aligned}$$

Normal-ordered product

$$\begin{aligned} : \phi(x)\phi(y) : \\ &= (\phi^{(+)}(x) + \phi^{(-)}(x))(\phi^{(+)}(y) + \phi^{(-)}(y)) \\ &= \phi^{(+)}(x)\phi^{(+)}(y) + \phi^{(-)}(y)\phi^{(+)}(x) \\ &+ \phi^{(-)}(x)\phi^{(+)}(y) + \phi^{(-)}(x)\phi^{(-)}(y) \end{aligned}$$
(39)

(38)

これらの差はc#であり、

$$\phi(x)\phi(y) - :\phi(x)\phi(y) := \left[\phi^{(+)}(x),\phi^{(-)}(y)\right]$$

= $\int d^3k d^3k' f_k(x) f_{k'}(y) \left[a(\vec{k}),a^{\dagger}(\vec{k'})\right]$
= $\int \frac{d^3k}{(2\pi)^3 2E_k} e^{-ik \cdot (x-y)}$ (40)

 $k^0 = E_k > 0 \Rightarrow$ 次の4次元積分で書くことができる:

$$\begin{bmatrix} \phi^{(+)}(x), \phi^{(-)}(y) \end{bmatrix} = \int \frac{d^4k}{(2\pi)^3} \theta(k^0) \delta(k^2 - m^2) e^{-ik \cdot (x-y)}$$
(41)
where $\theta(x) = \begin{cases} 1 & \text{for } x > 0 \\ 0 & \text{for } x < 0 \end{cases}$ (42)

heta(x)は超関数であり、積分の中でのみ定義されるから、heta(0)の値は必要ないが、しばしば $heta(0) = rac{1}{2}$ と定義するのが便利。.

5.4 Invariant commutator function とその性質

□ 交換子積と不変関数:

交換子積 $[\phi(x),\phi(y)]$ は任意のx,yで計算できる:

$$\begin{split} \left[\phi(x),\phi(y)\right] &= \left[\phi^{(+)}(x),\phi^{(-)}(y)\right] + \left[\phi^{(-)}(x),\phi^{(+)}(y)\right] \\ &= \int \frac{d^4k}{(2\pi)^3} \epsilon(k^0) \delta(k^2 - m^2) e^{-ik \cdot (x-y)} \\ &\equiv i\Delta(x-y;m^2) = \text{invariant commutator function (43)} \end{split}$$

 $\epsilon(x) =$ "staircase function" または "stair step function" (階段関数)

$$\epsilon(x) \equiv \theta(x) - \theta(-x) = \begin{cases} 1 & \text{for } x > 0 \\ -1 & \text{for } x < 0 \end{cases}$$
(44)

□ Invariant functionの性質:

Invariant function :

$$i\Delta(x) = \int \frac{d^4k}{(2\pi)^3} \epsilon(k^0) \delta(k^2 - m^2) e^{-ikx} = [\phi(x), \phi(0)] \quad (45)$$
$$= \int \frac{d^3k}{(2\pi)^3} \frac{1}{2E_k} \left(e^{-ikx} - e^{ikx} \right) \quad (46)$$

 Δ の性質:

- 1. Klein-Gordon 方程式を満たす。定義より明らか
- 2. Lorentz invariance: 定義より明らか

3. 奇関数:
$$\Delta(-x) = -\Delta(x)$$

:
 $\Delta(-x) = \frac{1}{2} \int \frac{d^4k}{d^4k} \epsilon(k^0) \delta(k^2 - m^2) e^{+ikx}$

$$\begin{aligned} f(-x) &= \frac{1}{i} \int \frac{1}{(2\pi)^3} \epsilon(k^*) \delta(k^* - m^*) e^{-ikx} \\ &\stackrel{k \to -k}{=} \frac{1}{i} \int \frac{d^4k}{(2\pi)^3} \epsilon(-k^0) \delta(k^2 - m^2) e^{-ikx} \\ &= -\Delta(x) \quad \Leftarrow \quad \epsilon(-k^0) = -\epsilon(k^0) \end{aligned}$$
(47)
- 4. Micro-causality *i.e.* $\Delta(x) = 0$ for $x^2 < 0$
 - : $\Delta(x)$ はLorentz-invariant ゆえ、 $t = 0, \vec{x} \neq 0$ の場合を考えれば十分。上記の奇関数性より

$$\Delta(ec{x},t=0)\,=\,-\Delta(-ec{x},t=0)$$

$$\begin{split} \Delta(\vec{x},t=0) &= rac{1}{i} \int rac{d^3 k dk^0}{(2\pi)^3} \epsilon(k^0) \delta(k^2 - m^2) e^{-i \vec{k} \cdot \vec{x}} \\ &= rac{1}{i} \int rac{d^3 k dk^0}{(2\pi)^3} \epsilon(k^0) \delta(k^2 - m^2) e^{+i \vec{k} \cdot \vec{x}} = \Delta(-\vec{x},t=0) \end{split}$$
従って

 $\Delta(x) = 0$ for $x^2 < 0$ (48)

 \Rightarrow space-like に離れた点では、 $\phi(x) \ge \phi(0)$ は同時対角化でき因果的に 無関係。 5.時間微分に対する性質:

$$irac{\partial}{\partial t}\Delta(x)|_{t=0}\,=\,\intrac{d^3k}{(2\pi)^3}rac{1}{2E_k}\left(-iE_ke^{-iec k\cdotec x}-iE_ke^{iec k\cdotec x}
ight)=-i\delta(ec x)$$

· Commutatorの定義に戻って考えれば、次の正準交換関係

$$\left[\dot{\phi}(x),\phi(0)\right]_{ET} = \frac{1}{i}\delta(\vec{x})$$
(49)

を表しており、明白。

5.5 Feynman Propagator とその性質

□ 時間順序積 (Time-ordered product):

 $\phi(x)$ をannihiliation part $\phi^{(+)}(x)$ とcreation part $\phi^{(-)}(x)$ に分解:

$$\phi(x) = \phi^{(+)}(x) + \phi^{(-)}(x)$$
(50)

$$\phi(y)|0\rangle = \phi^{(-)}(y)|0\rangle \quad y$$
での粒子の生成 (51)

$$\langle 0|\phi(x) = \langle 0|\phi^{(+)}(x) \quad x$$
での粒子の消滅 (52)

⇒ 次の相関関数はyで粒子を生成してxで消滅させる振幅を表す。 $\langle 0|\phi(x)\phi(y)|0\rangle = \langle 0|\phi^{(+)}(x)\phi^{(-)}(y)|0\rangle$ (53)

• 但し、この解釈が成り立つには $x^0 > y^0$ の時間順序が必要。 $x^0 < y^0$ の場合も併せて考えると

 $egin{aligned} x^0 > y^0 & & \langle 0 | \phi(x) \phi(y) | 0
angle \ x^0 < y^0 & & \langle 0 | \phi(y) \phi(x) | 0
angle \end{aligned}$

次の時間順序積 (Time-ordered product or T-product) を定義するのが自然

 $T(\phi(x)\phi(y))\,\equiv\, heta(x^0-y^0)\phi(x)\phi(y)+ heta(y^0-x^0)\phi(y)\phi(x)$

□ Feyman propagatorの定義:

T-product 用いて Feynman propagator を次のように定義:

$$i\Delta_F(x-y;m^2) \equiv \langle 0|T(\phi(x)\phi(y))|0\rangle$$
 (54)

粒子の *x*-*y*間の伝播の振幅を表す

□ **T-product**のLorentz不変性:

$$\theta(x^0 - y^0) + \theta(y^0 - x^0) = 1$$
を用いてT-productを書き換える:
 $T(\phi(x)\phi(y)) = \theta(x^0 - y^0)[\phi(x), \phi(y)] + \phi(y)\phi(x)$ (55)
◆ 一般に $\theta(x^0 - y^0)$ 自体はLorentz不変ではない:

(x - yがtime-likeな場合:

 $(x^0 - y^0)^2 > (\vec{x} - \vec{y})^2 \Rightarrow x^0 - y^0$ はゼロになれない。⇒ 連続的な proper Lorentz 変換では符号を変えない ⇒ $\theta(x^0 - y^0)$ はLorentz不変。

$$\bullet x - y$$
がspace-likeな場合:

 \Rightarrow

 $(x^0 - y^0)^2 < (\vec{x} - \vec{y})^2 \Rightarrow x^0 - y^0$ はゼロを経由して正にも負にもなり得るから $\theta(x^0 - y^0)$ はLorentz不変でない。

しかし space-like な場合 micro-causality より
$$[\phi(x),\phi(y)]=0$$

T-productはLorentz不変な概念

□ Feynman propagatorの具体形:

 $i\Delta_F$ は次のように invariant function Δ で表すことができる:

$$\begin{split} i\Delta_{F}(x-y) &= \langle 0|T(\phi(x)\phi(y))|0\rangle \\ &= \theta(x^{0}-y^{0})\langle 0|\phi^{(+)}(x)\phi^{(-)}(y)|0\rangle + \theta(y^{0}-x^{0})\langle 0|\phi^{(+)}(y)\phi^{(-)}(x)|0\rangle \\ &= \theta(x^{0}-y^{0})\langle 0|[\phi^{(+)}(x),\phi^{(-)}(y)]|0\rangle \\ &\quad + \theta(y^{0}-x^{0})\langle 0|[\phi^{(+)}(y),\phi^{(-)}(x)]|0\rangle \\ &= \theta(x^{0}-y^{0})i\Delta(x-y) + \theta(y^{0}-x^{0})i\Delta(y-x) \end{split}$$
(56)

 Δ の運動量表示を用いると

$$i\Delta_{F}(x-y) = \int \frac{d^{3}k}{(2\pi)^{3}} \Biggl\{ \theta(x^{0}-y^{0}) \frac{e^{-ik \cdot (x-y)}}{2E_{k}} + \theta(y^{0}-x^{0}) \frac{e^{-ik \cdot (y-x)}}{2E_{k}} \Biggr\}$$
(57)

次の積分を考える:

$$I \equiv \int \frac{dk^{0}}{2\pi i} \frac{e^{-ik^{0}(x^{0}-y^{0})}}{(k^{0}-E_{k}+i\epsilon)(k^{0}+E_{k}-i\epsilon)}$$
(58)

 k^0 -planeでのpoleの位置

$$egin{array}{c} -E_k+i\epsilon & & \ imes & &$$

Complex k^0 に対して $e^{-ik^0(x^0-y^0)} = e^{-i\Re k^0(x^0-y^0)}e^{\Im k^0(x^0-y^0)}$ (59) • $x^0 - y^0 > 0$ の場合:下半面で $\Im k^0 < 0$ 。そこで contour を閉じれば 積分は無限遠の半円周で収束。

留数定理より
$$k^0 = E_k - i\epsilon \sigma$$
 pole からの寄与を拾って
 $I = \frac{1}{2\pi i} (-2\pi i) \frac{1}{2E_k} e^{-iE_k(x^0 - y^0)} = -\frac{1}{2E_k} e^{-iE_k(x^0 - y^0)}$ (60)
• $x^0 - y^0 < 0$ の場合:上半面で contour を閉じて

$$I = -\frac{1}{2E_k} e^{-iE_k(y^0 - x^0)}$$
(61)

併せると $I = -\left\{ heta(x^0-y^0)rac{1}{2E_k}e^{-iE_k(x^0-y^0)}+ heta(y^0-x^0)rac{1}{2E_k}e^{-iE_k(y^0-x^0)}
ight\}$

従って

$$i\Delta_{F}(x-y) = i \int \frac{d^{4}k}{(2\pi)^{4}} \frac{e^{-ik \cdot (x-y)}}{(k^{0} - E_{k} + i\epsilon)(k^{0} + E_{k} - i\epsilon)}$$
$$= i \int \frac{d^{4}k}{(2\pi)^{4}} \frac{e^{-ik \cdot (x-y)}}{(k^{0^{2}} - (E_{k} - i\epsilon)^{2})}$$
(62)

ここで

$$k^{0^{2}} - (E_{k} - i\epsilon)^{2}) = k^{0^{2}} - (\vec{k}^{2} + m^{2}) + 2i\epsilon E_{k}$$

= $k^{2} - m^{2} + i\epsilon$ (63)

⇒ 次の重要な積分表示を得る:

$$\Delta_F(x-y) = \int \frac{d^4k}{(2\pi)^4} \frac{e^{-ik \cdot (x-y)}}{k^2 - m^2 + i\epsilon}$$
(64)

$$\Box \Delta_F(x-y)$$
の性質:

1 $\Delta_F(x-y)$ は<u> δ -関数 source を持つ Klein-Gordon 方程式の解</u>、*i.e.* Green 関数

$$(\partial^2 + m^2)i\Delta_F(x-y) = -i\delta^4(x-y)$$
 (65)

証明 1: T-product による $i\Delta_F$ の定義を用いる方法 Klein-Gordon 演算子を作用

$$\begin{aligned} (\partial^2 + m^2) i \Delta_F(x - y) \\ &= (\partial^2 + m^2) \langle 0 | \theta(x^0 - y^0) [\phi(x), \phi(y)] + \phi(y) \underbrace{\phi(x)}_{\text{jizs}} | 0 \rangle \\ &= (\partial_t^2 - \nabla^2 + m^2) \langle 0 | \theta(x^0 - y^0) [\phi(x), \phi(y)] | 0 \rangle \end{aligned}$$
(66)

$$egin{aligned} &\partial_t \left(heta(x^0-y^0)[\phi(x),\phi(y)]
ight) \ &= \underbrace{\delta(x^0-y^0)[\phi(x),\phi(y)]}_0 + heta(x^0-y^0)[\dot{\phi}(x),\phi(y)] \ &= \underbrace{\delta(x^0-y^0)[\phi(x),\phi(y)]}_{-i\delta^4(x-y)} + heta(x^0-y^0)[\ddot{\phi}(x),\phi(y)] \ &= \underbrace{\delta(x^0-y^0)[\dot{\phi}(x),\phi(y)]}_{-i\delta^4(x-y)} + heta(x^0-y^0)[\ddot{\phi}(x),\phi(y)] \end{aligned}$$

従って、

$$\partial_t^2 heta(x^0-y^0)[\phi(x),\phi(y)] = -i\delta^4(x-y) + heta(x^0-y^0)[\partial_t^2\phi(x),\phi(y)]$$

第二項は $abla^2+m^2$ と併せて $(\partial^2+m^2)\phi(x)$ を形成し消える。

$$\therefore \qquad (\partial^2 + m^2)i\Delta_F(x-y) = -i\delta^4(x-y) // \qquad (67)$$

証明 1: $i\Delta_F$ の積分表示を用いる方法

有用な公式

(*)
$$\frac{1}{\alpha + i\epsilon} = \mathcal{P} \frac{1}{\alpha} - i\pi\delta(\alpha)$$
 (68)

 $\mathcal{P}^{\frac{1}{\alpha}}_{\alpha}$ はCauchyの主値 (principal value) ゼロを含む区間 [a, b]の積分において

$$\int_{a}^{b} d\alpha \mathcal{P} \frac{1}{\alpha} f(\alpha) \equiv \lim_{\epsilon \to 0} \left(\int_{a}^{-\epsilon} d\alpha \frac{f(\alpha)}{\alpha} + \int_{\epsilon}^{b} d\alpha \frac{f(\alpha)}{\alpha} \right)$$
(69)

(*)の証明:

 $f(\alpha)$: f(0) =finiteな連続関数。図のようなcontour $C_1, C_2 + C_3$ に沿った 積分 $\int dlpha f(lpha)/(lpha + i\epsilon)$ を考える。(C_2 は半円周 C_3 をのぞいた部分)

qft1-5-30

明らかに、

$$\int_{C_2} + \int_{C_3} - \int_{C_1} =$$
 residue at $lpha = -i\epsilon$

 C_3 に沿った積分

$$\int_{C_3}\,=\,f(-i\epsilon)\int_{\pi}^{2\pi}id heta=\pi if(0)$$

従って

$$\int_{C_1} d\alpha \frac{f(\alpha)}{\alpha + i\epsilon} = \int_{C_2} d\alpha \mathcal{P} \frac{1}{\alpha} f(\alpha) + \pi i f(0) - \underbrace{2\pi i f(0)}_{\text{pole part}}$$
$$= \int d\alpha \mathcal{P} \frac{1}{\alpha} f(\alpha) - i\pi \int d\alpha \delta(\alpha) f(\alpha) // (70)$$

 Δ_F がGreen 関数であることの証明

$$(\partial^{2} + m^{2})\Delta_{F}(x - y) = (\partial^{2} + m^{2})\int \frac{d^{4}k}{(2\pi)^{4}} \frac{e^{-ik \cdot (x - y)}}{k^{2} - m^{2} + i\epsilon} = \int \frac{d^{4}k}{(2\pi)^{4}} (-k^{2} + m^{2}) \left\{ \mathcal{P}\frac{1}{k^{2} - m^{2}} - i\pi\delta(k^{2} - m^{2}) \right\} e^{-ik \cdot x} = -\int \frac{d^{4}k}{(2\pi)^{4}} e^{-ik \cdot x} = -\delta^{4}(x) //$$
(71)

2. $\Delta_F(x)$ の具体形とその漸近的振る舞い:

ベッセル関数の積分表示を用いると次のように書ける¹:

$$\Delta_F(x) = -D^c(x) = -\frac{1}{4\pi}\delta(x^2) + \frac{m}{8\pi\sqrt{x^2}}\theta(x^2) \left(J_1(m\sqrt{x^2}) - iN_1(m\sqrt{x^2})\right) - \frac{mi}{4\pi^2\sqrt{-x^2}}\theta(-x^2)K_1(m\sqrt{-x^2})$$
(72)

$$K_
u(z) \sim \sqrt{rac{\pi}{2z}} \, e^{-z}$$
 for large positive z

特徴:
$$x^2 > 0$$
 (time-like)な場合は振動
 $x^2 < 0$ (space-like)のときは遠距離で exponential 的にdamp

¹Bogoliubov -Shirkov

6 経路積分表示

経路積分(path integral)=量子力学の<mark>遷移振幅(transition amplitude)</mark>を 無限次元積分で表示する方法。

- 量子力学の本質である「(複素)揺らぎ」のオペレーター形式とは異なる表現法。
- 古典力学の作用原理との関係がつけやすい。
- 特別な極限で分配関数や相関関数の表示を与える。
- 統計熱力学との強い類似があり有用。
- 6.1 遷移振幅の経路積分表示:有限自由度の場合
- |q
 angle: Schrödinger表示における座標の固有関数 $\hat{q}|q
 angle=q|q
 angle$

対応する Heisenberg 表示の state と operator

$$|q,t\rangle \equiv e^{i\hat{H}t}|q\rangle$$
 (1)

$$\hat{q}(t) \equiv e^{i\hat{H}t}\hat{q}e^{-i\hat{H}t}$$
 (2)

$$\hat{q}(t)|q,t\rangle = q|q,t\rangle$$
 (3)

6.1.1 位相空間での経路積分: (一次元の場合) 対象は、次のような<u>遷移振幅</u>:

$$K(q,t|q',t') \equiv \langle q,t|q',t'\rangle = \langle q|e^{-i\hat{H}(t-t')}|q'\rangle$$
(4)

Stateの規格化と完全性:

$$\langle q|q'
angle \,=\, \delta(q-q')\,, \qquad \langle p|p'
angle \,=\, \delta(p-p') \ \int dq |q
angle \langle q|\,=\,1\,, \qquad \int dp |p
angle \langle p|\,=\,1$$

$\langle q|p angle =$ 運動量 pの固有関数の座標表示 $\frac{1}{i} \frac{\partial}{\partial q} \langle q|p angle = p \langle q|p angle$ $\Rightarrow \quad \langle q|p angle = \frac{1}{\sqrt{2\pi}} e^{iqp} \quad \epsilon^{iqp} \quad \epsilon^{iqp$

規格化のチェック:

$$\int dp \langle q | p \rangle \langle p | q' \rangle = \int \frac{dp}{2\pi} e^{ip(q-q')} = \delta(q-q')$$
(6)

 $\Box K(q,t|q',t')$ の特徴付け:

合成則: K(q,t|q',t')の最も基本的な性質:

$$\int dq'' K(q,t|q'',t'') K(q'',t''|q',t') = K(q,t|q',t') \quad (7)$$

これを繰り返し適用。N個の小区間に分割して計算し $N \to \infty$ 極限をとる

無限小の区間に対する遷移振幅

$$\langle q_{i+1}, t_{i+1} | q_i, t_i \rangle \simeq \langle q_{i+1} | 1 - i \hat{H} \Delta t | q_i \rangle$$
 (8)

第2項に対して p_i の完全系を挿入

$$\langle q_{i+1}|\hat{H}(\hat{p},\hat{q})|q_i\rangle = \int dp_i \langle q_{i+1}|p_i\rangle \langle p_i|\hat{H}(\hat{p},\hat{q})|q_i\rangle$$
 (9)

 \hat{H} 中の \hat{p}, \hat{q} の operator ordering の問題 $\hat{p} \geq \hat{q}$ が積としてmix しているときには、様々な ordering が可能: 例: pq or qp qp^2 or pqp or p^2q , 差は \hbar 以下のオーダー ⇒ 古典論からは決められない。 Ordering の数だけ、量子論があり得る。

次の要請を置く:

◆ Hamiltonian がエルミートになること。

◆ 古典的な対称性が量子論においても保たれること

これでは一意に決まらない場合もある。

• 重要な問題だが、以下で考察するHamiltonian は $\hat{p} \ge \hat{q}$ が混ざらないもののみなので、ここではこの問題を追求しない。

計算の続き:

 $\hat{p} \geq \hat{q}$ が混ざらない場合:

$$\langle p_i | \hat{H}(\hat{p}, \hat{q}) | q_i \rangle = H(p_i, q_i) \langle p_i | q_i \rangle$$
 (10)

従って

$$\langle q_{i+1}, t_{i+1} | q_i, t_i
angle \ \simeq \ \langle q_{i+1} | q_i
angle - i \int dp_i H(p_i, q_i) \Delta t \langle q_{i+1} | p_i
angle \langle p_i | q_i
angle$$

$$\langle q_{i+1}|q_i
angle = \int rac{dp_i}{2\pi} \langle q_{i+1}|p_i
angle \langle p_i|q_i
angle$$
を用いると

$$egin{split} & \langle q_{i+1}, t_{i+1} | q_i, t_i
angle \ & = \int rac{dp_i}{2\pi} \exp\left(-i(H(p_i, q_i)\Delta t - p_i(q_{i+1} - q_i))
ight) + \mathcal{O}((\Delta t)^2) \end{split}$$

この基本式を全区間に適用すると遷移振幅のphase-space path-integral 表示を得る:

$$egin{aligned} K(q,t|q',t') &= \int \prod_{i=0}^{N-1} rac{dp_i}{\sqrt{2\pi}} \prod_{i=0}^{N-1} rac{dq_i}{\sqrt{2\pi}} \ & \cdot \exp\left(-i\sum_{i=0}^{N-1} H(p_i,q_i)\Delta t + i\sum_{i=0}^{N-1} p_i((q_{i+1}-q_i)/\Delta t)\Delta t
ight) \ &= \int_{\substack{q(t_0)=q' \ q(t_N)=q}} \mathcal{D}p(t)\mathcal{D}q(t) \exp\left(i\int_{t'}^t dt''(p\dot{q}-H(p,q))
ight) \end{aligned}$$

ここで、積分測度は

$${\cal D}p(t)\,\equiv\,\lim_{N o\infty}\,\prod_{i=0}^{N-1}rac{dp_i}{\sqrt{2\pi}}\,,\qquad {\cal D}q(t)\equiv\lim_{N o\infty}\,\prod_{i=0}^{N-1}rac{dq_i}{\sqrt{2\pi}}$$

qft1-6-6

● これはかなり形式的な表現。

実際にこの無限積分を計算するには工夫が要る。

6.1.2 Lagrangian Path Integral

運動量pの積分 \implies Lagrangian 形式の経路積分

- 1. p-依存性が quadratic な場合には p-積分は exact に実行可能。
- 2. 一般にはそのようなことはできないが、準古典(WKB)近似の範囲内で 実行が可能な場合もある。

以下1.の場合のみ考察。

次の形のHamiltonianを考える:

$$H = \frac{p^2}{2m} + V(q) \tag{11}$$

各区間*i*についての*p*積分の形:

$$I_{i} = \int \frac{dp_{i}}{\sqrt{2\pi}} \exp\left(-i\frac{p_{i}^{2}}{2m}\Delta t + ip_{i}\dot{q}_{i}\Delta t\right)$$
(12)

qft1-6-7

指数部分を平方完成

$$\left(-irac{p_i^2}{2m}+ip_i\dot{q}_i
ight)\Delta t\,=\,-irac{\Delta t}{2m}(p_i-m\dot{q}_i)^2+irac{m}{2}\dot{q}^2\Delta t$$

Gauss (Fresenel)積分公式

$$\int_{-\infty}^{\infty} dp e^{-iap^2/2} = \sqrt{\frac{2\pi}{ia}}$$
(13)

を用いて積分を実行すると

$$I_{i} = \sqrt{\frac{m}{i\Delta t}} e^{i\frac{m}{2}\dot{q}_{i}^{2}\Delta t}$$
(14)

これより

ここで

$$L = \frac{m}{2}\dot{q}^2 - V(q) \tag{16}$$

6.2 経路積分の実行例

6.2.1 自由粒子

$$L = \frac{m}{2} \dot{q}^2, \qquad q(t_i) = q_i, \quad q(t_f) = q_f$$
 (17)

• <u>**重要な方針</u></u>: 経路についての積分を、境界条件を満たす古典解 q_{cl}(t) とその周りのfluctuation \tilde{q}(t)の積分に分けて考える:</u>**

$$q(t) = q_{cl}(t) + \tilde{q}(t)$$
(18)

$$\ddot{q}_{cl}(t) = 0, \qquad q_{cl}(t_i) = q_i, \quad q_{cl}(t_f) = q_f$$
(19)

$$\tilde{q}(t_i) = \tilde{q}(t_f) = 0 \tag{20}$$

古典解の形

$$q_{cl}(t) = at + b \tag{21}$$

$$a = \frac{q_f - q_i}{t_f - t_i}, \qquad b = \frac{q_i t_f - q_f t_i}{t_f - t_i}$$
(22)

qft1-6-9

作用:

$$S = \frac{m}{2} \int_{t_i}^{t_f} dt (\dot{q}_{cl} + \dot{\tilde{q}})^2$$

= $\frac{m}{2} \int_{t_i}^{t_f} dt \left(a^2 + 2a\dot{\tilde{q}} + \dot{\tilde{q}}^2\right)$
= $\frac{m}{2} \frac{(q_f - q_i)^2}{t_f - t_i} + ma \int_{t_i}^{t_f} dt \dot{\tilde{q}} + \frac{m}{2} \int_{t_i}^{t_f} dt \dot{\tilde{q}}^2$
= $S_{cl} + \frac{m}{2} \int_{t_i}^{t_f} dt \dot{\tilde{q}}^2$ (23)

従って

$$K(q_f, t_f | q_i, t_i) = C(t_f, t_i) e^{iS_{cl}[q_f, q_i, t_f, t_i]}$$

$$(24)$$

$$C(t_{f}, t_{i}) = \underbrace{\int_{\tilde{q}(t_{i})=0}^{\tilde{q}(t_{i})=0} \mathcal{D}\tilde{q}(t) \exp\left(i\frac{m}{2}\int_{t_{i}}^{t_{f}} dt\dot{\tilde{q}}^{2}\right)}_{q_{f}, q_{i}}$$
(25)

 $C(t_f, t_i)$ はKの満たすべき合成則から決められる:

$$egin{aligned} K(q_f,t_f|q_i,t_i) &= C(t_f,t_i) \exp\left[irac{m}{2}rac{(q_f-q_i)^2}{t_f-t_i}
ight] \ &= \int dq K(q_f,t_f|q,t) K(q,t|q_i,t_i) \ &= C(t_f,t) C(t,t_i) \int dq \exp\left[irac{m}{2} \underbrace{\left(rac{(q_f-q)^2}{t_f-t}+rac{(q-q_i)^2}{t-t_i}
ight)}_{(st)}
ight] \end{aligned}$$

$$(*) = \cdots = A(x-B)^2 + \frac{Q^2}{T}$$
(26)

where $x = q - q_i$, $Q = q_f - q_i$, $T = t_f - t_i$ (27)

$$A = \frac{t_f - t_i}{(t_f - t)(t - t_i)}, \qquad B = \frac{Q}{T}(t - t_i)^2$$
(28)

積分はGauss (Fresnel) 積分

$$\int_{-\infty}^{\infty} dx \exp\left(i\frac{m}{2}A(x-B)^2\right) = \left[\frac{2\pi}{im}\frac{(t_f-t)(t-t_i)}{t_f-t_i}\right]^{1/2}$$
(29)

$$C(t,t') = \alpha(t-t')^{-1/2} \ \mathcal{E} \ \mathbb{E} \ \mathcal{E} \$$

これは q_f, t_f を変数としたときの"拡散方程式" (Schrödinger 方程式)の解

演習 1. 次のLagrangian で与えられる調和振動子に対して、同様の方法 で遷移振幅を求めよ。

$$L = \frac{1}{2}\dot{x}^2 - \frac{\omega^2}{2}x^2$$
 (31)

6.3 Operator 形式との関係

6.3.1 Operator insertion を伴う遷移振幅

\Box 1-insertion:

Time intervalを (0,T): <u>時刻</u> t (0 < t < T)に $\underline{q(t)}$ を挿入したときの振幅:

$$\int \mathcal{D}q e^{i \int_0^T dt' L(t')} q(t)$$

$$= \int dq \langle q_f, T | q, t \rangle q \langle q, t | q_i, 0 \rangle$$

$$= \int dq \langle q_f, T | \hat{q}(t) | q, t \rangle \langle q, t | q_i, 0 \rangle$$

$$= \langle q_f, T | \hat{q}(t) | q_i, 0 \rangle$$
(32)

従って operator 形式では $\hat{q}(t)$ を挿入した振幅 になる。 \Box 2-insertion:

 $q(t) \ge q(t')$ を挿入: \Rightarrow これらを insert する場所は $t \ge t'$ の順序による。

t > t'	$\hat{q}(t)\hat{q}(t')$
t < t'	$\hat{q}(t')\hat{q}(t)$

これはT-productに他ならない。従って

$$\int \mathcal{D}q e^{iS} q(t) q(t') = \langle q_f, T | T(\hat{q}(t)\hat{q}(t')) | q_i, 0 \rangle$$
(33)

6.3.2 **T***-product

より正確には、経路積分で実現されるのは、T-productではなく、**T*-product**: $T^* \left(\partial_{t_1} \mathcal{O}_1(t_1) \mathcal{O}_2(t_2) \cdots \mathcal{O}_n(t_n) \right) \equiv \partial_{t_1} T^* \left(\mathcal{O}_1(t_1) \mathcal{O}_2(t_2) \cdots \mathcal{O}_n(t_n) \right)$ $T^*(q(t_1) \cdots q(t_n)) \equiv T(q(t_1) \cdots q(t_n))$

 $\mathcal{O}_i(t_i) =$ は任意の(一般に微分を含む) operator。

T*-product は完全に Lorentz 共変な概念

通常のT-productは(微分しない範囲ではLorentz共変だが)微分すると $heta(x^0 - y^0)$ から δ -functionを出すので注意。

□ 簡単な場合の例:

◆ 一階の微分の場合: この場合は T-product は T*-product と一致:

$$\partial_t T(q(t)q(t')) = \partial_t \left(\theta(t-t')q(t)q(t') + \theta(t'-t)q(t')q(t)\right)$$

= $(q(t)^2 - q(t)^2)\delta(t-t') + T(\partial_t q(t)q(t'))$
= $T(\partial_t q(t)q(t'))$ (34)

◆ 二階微分の場合: このときは異なる結果:

$$T^*(\partial_t q(t)\partial_{t'}q(t')) = \partial_t \partial_{t'}T(q(t)q(t'))$$

 $\neq T(\partial_t q(t)\partial_{t'}q(t'))$

実際

 $\partial_t \partial_{t'} T^*(\partial_t q(t) q(t')) \,=\, T(\partial_t q(t) \partial_{t'} q(t')) + [q(t), \dot{q}(t')]$

6.4 $n \perp Green 関数の経路積分表示$ $i\epsilon$ 処方、基底状態の射影、及び Euclid 化

6.4.1 *iϵ* 処方

Minkowski 空間での経路積分: 場 $\phi(x)$ の大きな揺らぎに対して e^{iS} が激しく振動 \Rightarrow well-defined ではない。

これを回避する最も簡単な処方: $|\phi(x)|>>1$ に対してexponential dampingを引き起こす因子

$$e^{-\int d^4x \frac{1}{2}\epsilon\phi(x)^2}, \quad \epsilon =$$
無限小 > 0 (35)

を付け加えて定義すること。

 \Leftrightarrow Mass term がある場合、 $m^2 \rightarrow m^2 - i\epsilon$ とすることに相当。

より有用な見方: Hamiltonian に小さな(虚数の)摂動を加えたと考え る。即ち

$$H \rightarrow H + \delta H$$
 (36)

$$\delta H = -i\hbar = -i\frac{\epsilon}{2}\int d^3x \phi(x)^2 \tag{37}$$

6.4.2 Large-time 極限と基底状態の射影

上記の摂動の影響は <u>1次の摂動論</u> で解析できる。 *n* 番目の状態のエネルギーシフト:

$$E'_{n} = E_{n} + \langle n | \delta H | n \rangle = E_{n} - ih_{n}$$
(38)
ここで $h_{n} \equiv \langle n | h | n \rangle$ (39)

⇒ 経路積分において、始状態の部分を見ると

$$e^{i(H+\delta H)t_{I}}|\psi_{I}\rangle = \sum_{n} e^{iE_{n}'t_{I}}|n\rangle\langle n|\psi_{I}\rangle$$

$$= e^{iE_{0}'t_{I}}|0\rangle\langle 0|\psi_{I}\rangle + \sum_{m\neq 0} e^{iE_{m}'t_{I}}|m\rangle\langle m|\psi_{I}\rangle$$

$$= e^{iE_{0}t_{I}-h_{0}t_{I}}\left\{|0\rangle\langle 0|\psi_{I}\rangle + \sum_{m\neq 0} e^{i(E_{m}-E_{0})t_{I}}e^{\Delta h_{m}t_{I}}|m\rangle\langle m|\psi_{I}\rangle\right\}$$

(40)

where
$$\Delta h_m = h_m - h_0 = \frac{\epsilon}{2} \int d^3x (\langle m | \phi(x)^2 | m \rangle - \langle 0 | \phi(x)^2 | 0 \rangle)$$
 (41)

Excited state での $\phi(x)^2$ の期待値は真空でのそれより大(であると期待される:後で議論)

 $\Rightarrow \Delta h_m > 0 \Rightarrow t_I \rightarrow -\infty$ の極限で { }内は第1項(真空からの寄与)が dominate

同様に終状態に対して $t_F \rightarrow \infty$ の極限で

 $\langle \psi_F | e^{-i(H+\delta H)t_F} \longrightarrow \langle \psi_F | 0 \rangle \langle 0 | e^{-iE_0t_F + h_0t_F}$ (42)

● Operatorを挿入した振幅は、挿入しない振幅で割って定義されるから、 ここに現れた指数因子はすべて分母分子で相殺。

⇒ この極限で振幅は始状態及び終状態に依らなくなり、 time-ordered Green's functionを与える:

$$\lim rac{\int \mathcal{D} \phi(x) \mathcal{O}(x_1) \cdots \mathcal{O}(x_n) e^{iS}}{\int \mathcal{D} \phi(x) e^{iS}} = rac{\langle 0 | T^*(\mathcal{O}(x_1) \cdots \mathcal{O}(x_n)) | 0
angle}{\langle 0 | 0
angle}$$

ととると、明らかに

$$\epsilon H_m - \epsilon H_0 = \epsilon (E_m - E_0) > 0 \tag{44}$$

このとき

$$H' = H - i\epsilon H = e^{-i\epsilon} H$$

$$\therefore \quad H't = e^{-i\epsilon} Ht = He^{-i\epsilon} t \qquad (45)$$

 $\Leftrightarrow t \rightarrow te^{-i\epsilon}$ のように時間軸を回転させることに対応。

もし、 ϵ を連続的に大きくしていく過程で complex *t*-plane にsingularityがないとすると、 $\epsilon = \pi/2$ ととってもよい。この場合には

$$t \to e^{-i\pi/2} t = -it \equiv -i\tau$$
 (46)

すなわち、あたかも Euclidean space に移行した形となる。

すると
$$i\int dt (\partial_t \phi)^2 \rightarrow i\int d(-i\tau) \left(i\partial_\tau \phi\right)^2 = -\int d\tau (\partial_\tau \phi)^2 < 0$$
 (47)

 \Rightarrow convergence は保証される。

Propagator を見ると、図のように p^0 の contour を反時計回りに虚軸に回しても mass-shell poleを通らない。 ⇒ 次のような書き換えができる。

$$\int_{-\infty}^{\infty} dp^0 = i \int_{-\infty}^{\infty} dp_E^0$$
(48)

まとめ:

$$p^0 \to i p_E^0, \qquad t \to \frac{1}{i} au$$
 (49)

のルールで Euclid化することによって収束するamplitudeが定義できる。

7 Feynman ルールと 生成汎関数

場の理論における最も重要な量 = 相関関数 (Green 関数) この章の内容

- Green 関数の総体を扱う生成汎関数 (generating functional) の定義と性質
- 生成汎関数を摂動論で求める際に有用なFeynman ルールの導出
- 7.1 Green 関数のgenerating functional Z[J]

簡単のため、 ϕ^4 理論を例にとる。

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m}{2} \phi^2 - \frac{\lambda}{4!} \phi^4 \tag{1}$$

$$S[\phi] = \int d^4x \left(\frac{1}{2}\phi K\phi - \frac{\lambda}{4!}\phi^4\right)$$
(2)

$$K = -(\partial^2 + m^2) \tag{3}$$
基本場のn点関数

$$G^{(n)}(x_1, x_2, \dots, x_n) = \langle \phi(x_1)\phi(x_2)\cdots\phi(x_n) \rangle$$

= $\langle 0|T^*(\phi(x_1)\phi(x_2)\cdots\phi(x_n)|0\rangle$ (4)

その経路積分表示

$$G^{(n)}(x_1, x_2, \dots, x_n) = \frac{1}{N} \int \mathcal{D}\phi e^{iS} \phi(x_1) \phi(x_2) \cdots \phi(x_n) \quad (5)$$

$$N = \int \mathcal{D}\phi e^{iS} \tag{6}$$

すべての $G^{(n)}$ を同時に扱う標準的な方法: 生成汎関数(generating functional):

$$Z[J] \equiv \sum_{n=0}^{\infty} \frac{1}{n!} \int d^4 x_1 \cdots \int d^4 x_n G^{(n)}(x_1, x_2, \dots, x_n)$$

$$\cdot (iJ(x_1))(iJ(x_2)) \cdots (iJ(x_n))$$

$$= \frac{1}{N} \int \mathcal{D}\phi \exp(iS[\phi] + iJ \cdot \phi) \qquad (7)$$

$$J \cdot \phi \equiv \int d^4 x J(x) \phi(x) \qquad (8)$$

- ϕ をスピンと見れば、Jは磁場にあたる。
- $(1/i)(\delta/\delta J(x)) \Rightarrow \phi(x)$ が一つ指数関数の肩からおりてくる。 Z[J]を図示すると

□ *Z*[*J*]の摂動展開:

 λ が小さいとして、Z[J]を λ の巾で展開して計算。 \Rightarrow 作用を free な部分と相互作用部分に分ける:

$$S_{0}[\phi] = \int d^{4}x \frac{1}{2} \left((\partial \phi)^{2} - m^{2} \phi^{2} \right)$$

=
$$\int d^{4}x \frac{1}{2} \phi (-\partial^{2} - m^{2}) \phi$$
(9)
$$\lambda \int d^{4}x \frac{1}{2} \phi (-\partial^{2} - m^{2}) \phi$$

$$S_I[\phi] = -\frac{\lambda}{4!} \int d^4x \phi(x)^4 \tag{10}$$

qft1-7-3

以下しばらく全体の規格化の因子1/Nは忘れて考える

 \Diamond 自由な理論に対するgenerating functional $Z_0[J]$:

$$Z_0[J] = \int \mathcal{D}\phi \exp\left(iS_0[\phi] + iJ \cdot \phi\right)$$
(11)

指数部分は ϕ の二次式 \Rightarrow ガウス積分が容易に実行できる:

$$\frac{1}{2}\phi K\phi + J \cdot \phi = \frac{1}{2}(\phi + K^{-1}J)K(\phi + K^{-1}J) - \frac{1}{2}JK^{-1}J \quad (12)$$

$$\therefore \quad Z_0[J] = \exp\left(-\frac{i}{2}JK^{-1}J\right) \quad (13)$$

ここで $K^{-1}(x,y) = \Delta_F(x-y)$ はFeynman propagator:

$$-(\partial^{2} + m^{2} - i\epsilon)K^{-1}(x, y) = \delta^{4}(x - y)$$
$$K^{-1}(x - y) = \int \frac{d^{4}p}{(2\pi)^{4}}K^{-1}(p)e^{-ip\cdot(x - y)}$$
$$K^{-1}(p) = \frac{1}{p^{2} - m^{2} + i\epsilon}$$
(14)

ロZ[J]のうまい書き換え: $\delta/\delta(iJ)$ を作用 $\Leftrightarrow \phi$ の挿入Z[J]は次のように書ける

$$Z[J] = G\left[\frac{\delta}{\delta(iJ)}\right] F[iJ]$$
(15)

ここで、

$$G\left[\frac{\delta}{\delta(iJ)}\right] = \exp\left(iS_{I}[\underbrace{\delta/\delta(iJ)}_{\sim\phi}]\right)$$
(16)
$$F[iJ] = \exp\left(\frac{i}{2}(iJ)\Delta_{F}(iJ)\right) = Z_{0}[J] = \text{free part}$$
(17)

これを S_I の巾で展開 \Leftrightarrow 摂動展開

◇ この展開を得るためのよりうまい方法あり。⇒ Feynman diagramの規則

まず、自明な書き換えをする

$$G\left[\frac{\delta}{\delta(iJ)}\right]F[iJ] = G\left[\frac{\delta}{\delta(iJ)}\right]F[iJ]e^{iJ\phi}\Big|_{\phi=0}$$
(18)

 $\phi = 0$ と置く前に、これを次のように書き換える

$$G\left[\frac{\delta}{\delta(iJ)}\right] F[iJ]e^{iJ\cdot\phi} = G\left[\frac{\delta}{\delta(iJ)}\right] F\left[\frac{\delta}{\delta\phi}\right] e^{iJ\cdot\phi}$$
(19)

 $G \ge F$ の操作は交換するから、これはさらに次のように書き直せる:

$$= F\left[\frac{\delta}{\delta\phi}\right] G\left[\frac{\delta}{\delta(iJ)}\right] e^{iJ\cdot\phi} = F\left[\frac{\delta}{\delta\phi}\right] G[\phi] e^{iJ\cdot\phi}$$
(20)

従って、結局

$$G\left[\frac{\delta}{\delta(iJ)}\right]F[iJ] = F\left[\frac{\delta}{\delta\phi}\right]G[\phi]e^{iJ\cdot\phi}\Big|_{\phi=0}$$
(21)

これより、Z[J]に対する非常に便利な表式を得る:

(*)
$$Z[J] = \exp\left(\frac{1}{2}\frac{\delta}{\delta\phi}\Delta\frac{\delta}{\delta\phi}\right)\exp\left(iS_{I}[\phi] + iJ\cdot\phi\right)\Big|_{\phi=0}$$
(22)
(23)

• S_I で展開 \Rightarrow 摂動論

● 記号の簡略化をすると便利:

$$\frac{\delta}{\delta\phi}\Delta\frac{\delta}{\delta\phi} = \int d^4x_1 d^4x_2 \frac{\delta}{\delta\phi(x_1)}\Delta(x_1 - x_2)\frac{\delta}{\delta\phi(x_2)} = \Delta_{ij}\partial_i\partial_j \quad (24)$$
$$\frac{\delta}{\delta\phi(x_i)} = \partial_i \qquad (25)$$

添え字
$$i \Leftrightarrow \phi(x_i) \quad \sum_i \Leftrightarrow x_i$$
 積分。

□ ファインマン図による表現:簡単な例:

0点関数 (vacuum bubble): $\mathcal{O}(J^0)$

基本公式 (\star) でJ = 0とおき、 e^{iS_I} を展開。最初の非自明な項

$$iS_{I}[\phi] = -i\frac{\lambda}{4!}\phi^{4}$$
(26)

最後に $\phi = 0$ と置くので、ゼロにならないためには $\exp(\frac{1}{2}\Delta_{ij}\partial_i\partial_j)$ 部分から4つの微分が必要。

これはTaylor展開の第2項から生ずる。従って求める寄与は

$$\frac{1}{2!} \left(\frac{1}{2} \Delta_{ij} \partial_i \partial_j \right)^2 \left(-i \frac{\lambda}{4!} \phi^4 \right) = \frac{1}{2} \left(\frac{1}{2} \right)^2 \left(-i \frac{\lambda}{4!} \right) \Delta_{12} \Delta_{34} \partial_1 \partial_2 \partial_3 \partial_4 \phi_i^4$$
(27)

結果:

$$\frac{1}{2} \left(\frac{1}{2}\right)^2 \left(-i\frac{\lambda}{4!}\right) 4! \Delta_{ii} \Delta_{ii} = \underbrace{\frac{1}{2}(-i\lambda)}_{\text{standard factor}} \times \underbrace{\frac{1}{4}}_{\text{symmetry factor}} \times \Delta_{ii} \Delta_{ii}$$
(28)

これは次の2-loop vacuum bubble diagramで表される:

 $Z[J = 0] = \int \mathcal{D}\phi e^{iS} =$ すべてのvacuum bubble diagramsの寄与の和 ⇒ $\int \mathcal{D}\phi e^{iS}$ で割ると、すべてのvacuum bubbleを取り除いたものが得 られる。(規格化の意味)

$$Z[J] = \frac{\int \mathcal{D}\phi e^{iS+iJ\cdot\phi}}{\int \mathcal{D}\phi e^{iS}}$$
(29)

2点関数 (propagator): $\mathcal{O}(J^2)$

 $\mathcal{O}(\lambda^0)$: 自由な(tree level \mathcal{O}) propagator $\mathcal{O}(\lambda)$ 1-loop \mathcal{O} propagator :

Taylor 展開における3次の項 $(S_I + J \cdot \phi)^3 \ni 3S_I J J$ から生ずる。 寄与:

$$\frac{i^{3}}{3!} \times 3 \times S_{I}[\phi] (J \cdot \phi)^{2} = \frac{i^{3}}{3!} \times 3 \times \left(\frac{-i\lambda}{4!}\right) \phi_{i}^{4} J_{j} \phi_{j} J_{k} \phi_{k} \qquad (30)$$

今度は6個の微分が必要。 $\leftarrow \exp(rac{1}{2}\Delta_{ij}\partial_i\partial_j)$ の展開の3次の項。 従って、求める寄与は

$$\frac{i^{3}}{3!} \times 3 \times \left(\frac{-i\lambda}{4!}\right) \frac{1}{3!} \times \left(\frac{1}{2}\right)^{3} J_{j} J_{k} \Delta_{12} \Delta_{34} \Delta_{56} \partial_{1} \partial_{2} \cdots \partial_{6} (\phi_{i}^{4} \phi_{j} \phi_{k})$$
(31)

Diagram は次の形:

qft1-7-10

微分の演算は容易だが、若干面倒。

うまい計算の規則 ← 縮約に関する combinatiricsの理解

□ 縮約のCombinatorics:

相関関数の計算に関する ファインマン規則

combinatoricsのルールが非常に規則的になっていることに起因。

二つの場の積の場合:

$$egin{aligned} &rac{1}{2}rac{\delta}{\delta\phi}\Deltarac{\delta}{\delta\phi}(\phi_1\phi_2) \,=\, rac{1}{2}rac{\delta}{\delta\phi_i}\Delta_{ij}(\delta_{j1}\phi_2+\phi_1\delta_{j2})\ &=\, rac{1}{2}\Delta_{ij}(\delta_{j1}\delta_{i2}+\delta_{j2}\delta_{i1})\ &=\, \Delta_{12} \quad (\because \Delta_{ij}=\Delta_{ji}) \end{aligned}$$

• 2n個の積 $\phi_1\phi_2\cdots\phi_{2n}$ の場合:

 $\frac{1}{n!} \left(\frac{1}{2} \frac{\delta}{\delta \phi} \Delta \frac{\delta}{\delta \phi} \right)^{n} (\phi_{1} \phi_{2} \cdots \phi_{2n}) = \frac{1}{n! 2^{n}} \left(\frac{\delta}{\delta \phi} \Delta \frac{\delta}{\delta \phi} \right)^{n} (\phi_{1} \phi_{2} \cdots \phi_{2n})$ 最初の $\frac{\delta}{\delta \phi}$ は2n個の異なる ϕ_{i} に働く。 二番目の微分 $\frac{\delta}{\delta \phi}$ は残りの2n - 1の ϕ_{i} に働く。 これを繰り返す \Rightarrow 微分から生ずる項の数は(2n)!となる。 これと $1/2^n n!$ の因子を組み合わせると

$$\frac{(2n)!}{2^n n!} = \frac{(2n)!!(2n-1)!!}{2^n n!} = (2n-1)!!$$

この数の理解

Propagatorsの異なる積の combinationsの数を求める。 1つの ϕ_i を選択 \Rightarrow これと pair をなすことができる ϕ_j の数は2n - 1。 $\Rightarrow 2n - 1$ 個の異なる propagator のこりの2n - 2個の ϕ の中からまた1つ選ぶ $\Rightarrow \Rightarrow 2n - 3$ 個の異なる propagator の choice

この操作を繰り返す $\Rightarrow n$ 個の propagator の (2n - 1)!! 通りの異なる積が得られる。

 \downarrow

次の簡明な公式

$$\frac{1}{n!} \left(\frac{1}{2} \frac{\delta}{\delta \phi} \Delta \frac{\delta}{\delta \phi} \right)^n \left(\phi_1 \phi_2 \cdots \phi_{2n} \right) = \sum_{\text{distinct}} \Delta_{i_1 i_2} \Delta_{i_3 i_4} \cdots \Delta_{i_{2n-1} i_{2n}} (32)$$

右辺の各項の係数は丁度1:可能なpropagatorの組み合わせが一回ずつ 実現。

 $\Rightarrow \phi_i$ を結ぶ線に一つのpropagatorを対応させることができる。

□ Symmetry factorの勘定:

上記のルールは、相互作用vertexのように、同一点での場の積を挿入する場合には修正が必要になる。

例1 ϕ^4 : すべて異なる位置の場合には(4-1)!! = 3通りのdiagramsが 生成される。これらは次の表式と対応

$$\Delta_{12}\Delta_{34} + \Delta_{13}\Delta_{24} + \Delta_{14}\Delta_{23} \tag{33}$$

しかし、すべての位置が同じ場合には、図としては同一になる。 ⇒ 因子3が掛かる。

例2 $\phi_1\phi_2\phi_3^4$: すべての位置が異なれば、(6-1)!! = 15個の異なる図が生成される。実際には独立な図の数は2個。

(a) Δ_{12} と vacuum bubble からなる。これに掛かる因子は3。 (b) $\phi_1 と \phi_2$ 両方を ϕ_3^4 とcontractする仕方は $4 \times 3 = 12$ 通り。 併せれば正しく15個の図に対応

Symmetry factorの勘定:

- まずすべての点が異なるとして生成される図の数を勘定。
- 次に同一点を同定したときの独立な図をすべて描き、それに対 する重複の数を勘定

7.2 連結 (connected) グリーン関数に対する生成汎関数 W[J]

グリーン関数に寄与するdiagrams = connected+disconnected

物理的に非自明なダイナミックスを表すのは連結相関関数。 非連結相関関数 = 連結なものの組み合わせ 連結グリーン関数の生成汎関数W[J]:

$$iW[J] \equiv \sum_{n=0}^{\infty} \frac{1}{n!} \int d^4 x_1 \cdots \int d^4 x_n G^{(n),c}(x_1, x_2, \dots, x_n)$$

$$\cdot (iJ(x_1))(iJ(x_2)) \cdots (iJ(x_n))$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} G^{(n),c}_{i_1 i_2 \dots i_n}(iJ_{i_1})(iJ_{i_2}) \cdots (iJ_{i_n})$$
(34)

 $\Box Z[J] と W[J] の関係:$

1. Combinatoric Method

Z[J]に寄与する項を連結成分の数で分類。 $n個の連結成分を持つ項は<math>W[J]^n$ から生ずる。 どのW[J]の因子から来るかは区別しないのでn個のW[J]の因子の並べ 方の数n!で割らねばならない。

各W[J]にiをつける convention を採用すれば、次の関係を得る:

$$Z[J] = \sum \frac{i^n}{n!} W[J]^n = e^{iW[J]}$$
 (35)

統計物理との対応: $W[J] \sim \text{Helmholtz} \mathcal{O}$ 自由エネルギーF(V,T) $V \sim J, T \sim \hbar$ 注: 場を適当に rescale ⇒ 温度T は coupling constant に対応 ϕ^4 理論の例: $\phi = \lambda^{-1/2}\chi$ とおいて作用を書き換えると、 $S = \frac{1}{\lambda} \int d^4x \left(\frac{1}{2}\partial_\mu\chi\partial^\mu\chi - \frac{m}{2}\chi^2 - \frac{1}{4!}\chi^4\right)$ (36)

 $\therefore \qquad T \sim \hbar \lambda$

• 全相関関数と連結相関関数の関係の具体例:

$$\langle \phi_i \rangle_c = \frac{1}{Z} \frac{\delta}{\delta i J_i} Z = \frac{\delta i W}{\delta i J_i} = \frac{\delta W}{\delta J_i}$$
 (37)

Zで割ることで、disconnected diagramsを取り除いている。

2点関数

$$\langle \phi_{i}\phi_{j}\rangle = \frac{1}{Z}\frac{\delta}{\delta iJ_{i}}\frac{\delta}{\delta iJ_{j}}Z = \frac{1}{Z}\frac{\delta}{\delta iJ_{i}}\left(\frac{\delta iW}{\delta iJ_{j}}Z\right)$$

$$= \frac{\delta^{2}iW}{\delta iJ_{i}\delta iJ_{j}} + \frac{\delta iW}{\delta iJ_{i}}\frac{\delta iW}{\delta iJ_{j}}$$

$$= \langle \phi_{i}\phi_{j}\rangle_{c} + \langle \phi_{i}\rangle_{c}\langle \phi_{j}\rangle_{c}$$

$$(38)$$

2. W[J]の物理的な特徴

W[J]がconnectedな相関関数の母関数の物理的理解

← cluster decomposition に対する性質

N-点関数を二つのclusterにわけ、それらをspace-likeな遠方に引き離す。

Connectedの場合: 長距離のpropagatorが現れる ⇒ dampしてゼロになる。 Disconnectedの場合: そこで切れば、 dampしない。

この違いで、connected graphを区別することができる。

 \Downarrow

系を有限な箱に入れ、sourceを局所的なsupportを持つ二つの部分に分解

$$\Omega_1$$
 Ω_2 $J_1(x)
eq 0, J_2(x)=0$ $J_2(x)
eq 0, J_1(x)=0$

$$J(x)=J_1(x)+J_2(x)$$

作用Sがlocal interactionのみを含むとすると、

$$S[\phi] + J \cdot \phi = \int_{\Omega_1} d^n x (\mathcal{L} + J_1 \cdot \phi) + \int_{\Omega_2} d^n x (\mathcal{L} + J_2 \cdot \phi) + \int_{x \notin \Omega_1, \Omega_2} d^n x \mathcal{L} (J_i \mathsf{L} \mathsf{K} \mathsf{S} \mathsf{G} \mathsf{N}) + 境界 \partial \Omega_i \mathsf{D} \mathsf{S} \mathsf{S} \mathsf{S} \mathsf{S} \mathsf{S}$$

$$(39)$$

Generating functional は次のように factorize:

$$Z[J] = Z_1[J_1] \cdot Z_2[J_2] \cdot Z_{12}[J_1, J_2]$$
(40)
$$Z_i[J_i] = \int_{x \in \Omega_i} \mathcal{D}\phi e^{i(S+J_i \cdot \phi)}, \quad Z_{12} = 境界 \,\partial\Omega_i \, \text{からの寄与}$$
(41)

ここで全系をlinearにscale upして、無限大volumeにする。 \Rightarrow 境界からの寄与 Z_{12} は無視できる。 $Z=e^{iW}$ を用いると

$$W[J] = W_1[J_1] + W_2[J_2]$$
 (42)

これをJの巾で展開して連結相関関数を定義。

$$egin{aligned} & iW[J] = \sum rac{1}{n!} \int dx_1 dx_2 \cdots dx_n iG_c^{(n)}(x_1, \dots, x_n)(iJ(x_1)) \cdots (iJ(x_n)) \ & = \sum rac{1}{n!} \int dx_1 \cdots dx_p dy_{p+1} \cdots dy_n \ & imes i G_c^{(n)}(x_1, \dots, x_p, y_{p+1} \dots y_n) i^n J_1(x_1) \cdots J_1(x_p) \ & imes J_2(y_{p+1}) \cdots J_2(y_n) \ & x_i \in \Omega_1 \,, \quad y_j \in \Omega_2 \end{aligned}$$

この表式が $iW_1[J_1] + iW_2[J_2]$ と分解しなければならない。

⇒ 二つの source が混合した部分はゼロとなる必要あり。

$$G_c^{(n)}(x_1,\ldots,x_p,y_{p+1}\ldots y_n) \longrightarrow 0$$
 as $min|x_i-y_j| \rightarrow \infty$ (43)

これはまさしく connected な相関関数がもつ性質 Disconnected diagrams はこれを満たさない。

- 注:これは非摂動論的にも成立する
- 7.3 1PI グラフに対する生成汎関数 = 有効作用
- $W[J] \Leftrightarrow$ Helmholtzの自由エネルギーF(V,T)
- 有効作用 $\Gamma[\Phi] \Leftrightarrow \text{Gibbs} \mathcal{O}$ 自由エネルギーG(P,T)
- $V \leftrightarrow J$ から $P \leftrightarrow \Phi_i$ へのLegendre 変換で得られる。

$$\Phi_i \equiv \frac{\delta i W}{\delta i J_i} = \frac{\delta W}{\delta J_i} = \langle \phi_i \rangle_c \text{ in the presence of } J_i \qquad (44)$$

$$(-i\Gamma[\Phi]) \equiv (iJ_i)\Phi_i - iW \implies \Gamma[\Phi] = W - J_i\Phi_i$$
 (45)

(44)を逆に解いた式も非常に重要。(45)を Φ_i で汎関数微分すると、

$$\frac{\delta(-i\Gamma)}{\delta\Phi_{i}} = \frac{\delta(-i(W - J_{i}\Phi_{i}))}{\delta\Phi_{i}} = -\frac{\delta iW}{\delta\Phi_{i}} + \frac{\delta iJ_{j}}{\delta\Phi_{i}}\Phi_{j} + iJ_{i}$$
$$= -\frac{\delta iJ_{j}}{\delta\Phi_{i}}\frac{\delta W}{\delta J_{j}} + \frac{\delta iJ_{j}}{\delta\Phi_{i}}\Phi_{j} + iJ_{i}$$
(46)

(44)より、第1項と2項はキャンセルするから、

$$\frac{\delta(-i\Gamma)}{\delta\Phi_i} = iJ_i \quad \Rightarrow \quad \frac{\delta\Gamma}{\delta\Phi_i} = -J_i \tag{47}$$

注: $-i\Gamma, iW, iJ$ のように適当にiをつけたものを基本と考えると、統計物理との対応が良くなると同時に、符号の規則が系統的になる。

□ Γ[Φ]の意味:

具体的に $\Gamma[\Phi]$ を計算して、その意味を見る。

● **2**点関数: (47)の左側の式を *iJ_i* で微分すると

$$\delta_{ij} = \frac{\delta^2(-i\Gamma)}{\delta i J_i \delta \Phi_j} = \frac{\delta \Phi_k}{\delta i J_i} \frac{\delta^2(-i\Gamma)}{\delta \Phi_k \delta \Phi_j} = \langle \phi_i \phi_k \rangle \frac{\delta^2(-i\Gamma)}{\delta \Phi_k \delta \Phi_j}$$
(48)
従って

$$\frac{\delta^2(-i\Gamma)}{\delta\Phi_k\delta\Phi_j} = \langle\phi_k\phi_j\rangle^{-1} \tag{49}$$

これはinverse propagator、すなわちwave operator を表す。

• 3点関数: (48) を
$$iJ_{\ell}$$
で微分すると、

$$0 = \langle \phi_i \phi_k \phi_\ell \rangle \langle \phi_k \phi_j \rangle^{-1} + \langle \phi_i \phi_k \rangle \langle \phi_\ell \phi_m \rangle \frac{\delta^3(-i\Gamma)}{\delta \Phi_m \delta \Phi_k \delta \Phi_j}$$

$$\therefore \quad \langle \phi_i \phi_j \phi_k \rangle = \langle \phi_i \phi_{i'} \rangle \langle \phi_j \phi_{j'} \rangle \langle \phi_k \phi_{k'} \rangle \frac{i\delta^3\Gamma}{\delta \Phi_{i'} \delta \Phi_{j'} \delta \Phi_{k'}}$$
(50)

これは、propagatorの足を取り去った amputated 3-point function を 表す。

•この式をさらに iJ_ℓ で微分すると、

$$egin{aligned} &\langle \phi_i \phi_j \phi_k \phi_\ell
angle &= rac{\delta}{\delta i J_\ell} \left(\langle \phi_i \phi_{i'}
angle \langle \phi_j \phi_{j'}
angle \langle \phi_k \phi_{k'}
angle
ight) rac{i \delta^3 \Gamma}{\delta \Phi_{i'} \delta \Phi_{j'} \delta \Phi_{k'}} \ &+ \langle \phi_i \phi_{i'}
angle \langle \phi_j \phi_{j'}
angle \langle \phi_k \phi_{k'}
angle \langle \phi_\ell \phi_{\ell'}
angle rac{i \delta^4 \Gamma}{\delta \Phi_{i'} \delta \Phi_{j'} \delta \Phi_{k'} \delta \Phi_{\ell'}} \end{aligned}$$

1行目の微分 \Rightarrow 3つの connected 3-pt functions を生み出す これらはそれぞれ上記の公式(50)を用いて $\Gamma^{(3)}$ で書き直せる。

 \Downarrow

予想: $\Gamma = 1$ 粒子線で切って二つに分けられないような 1 粒子既約 (1-particle-irreducible=1PI) なグラフの総体

$$\Gamma_{i_1 i_2 \dots i_n} \equiv \frac{i \delta^n \Gamma}{\delta \Phi_{i_1} \delta \Phi_{i_2} \cdots \delta \Phi_{i_n}}$$
(51)

$$\Gamma = \frac{i}{2} \Phi_i G_{ij}^{-1} \Phi_j - i \sum \frac{1}{n!} \Gamma_{i_1 i_2 \dots i_n} \Phi_{i_1} \Phi_{i_2} \cdots \Phi_{i_n} \quad (52)$$

2点関数のみ少し例外

$$\Gamma_{ij} \equiv -G_{ij}^{-1} \tag{53}$$

□ Tree level での作用との比較:

Tree level では Γ はもともとの作用と一致。 例 Scalar 理論 (積分記号を省略)

$$\Gamma^{(0)} = \frac{1}{2} \Phi_i (\Delta_F^{-1})_{ij} \Phi_j - \sum \frac{1}{n!} \lambda_{i_1 i_2 \dots i_n} \Phi_{i_1} \Phi_{i_2} \cdots \Phi_{i_n}$$

= $\frac{i}{2} \Phi_i \Delta_{ij}^{-1} \Phi_j - \sum \frac{1}{n!} \lambda_{i_1 i_2 \dots i_n} \Phi_{i_1} \Phi_{i_2} \cdots \Phi_{i_n}$ (54)

上記の一般形と比較すると

$$\Gamma_{i_1 i_2 \dots i_n}^{(0)} = -i\lambda_{i_1 i_2 \dots i_n} \tag{55}$$

□ **Гの物理的有用性**:

$$\frac{\delta\Gamma}{\delta\Phi_i} = -J_i = 0 \qquad (56)$$

外部 source をゼロにする条件。⇔ 量子効果も含めた運動方程式

- *S*行列との関係
- 7.4 $\Gamma[\Phi]$ が1PI diagramの生成汎関数であることの証明

1PI diagram ⇔ どの1本のline(propagator)を切断してもdiagramは まだ connected

Effective action $\Gamma[\Phi]$ がこのようなdiagramsの生汎関数になっていることを 以下で示す。(以下では 簡単のため Φ の代わりに ϕ と書く。) □ Propagator を切断する trick:

作用を次のように少し modify:

$$S_{\epsilon} = \frac{1}{2} \int dx dy \phi(x) \phi(y) \left[K(x, y) + \epsilon \right] + V(\phi)$$
 (57)

K(x, y) = wave operator, $\epsilon =$ small parameter (58)

Modified propagator Δ_{ϵ} を次のように定義:

$$\int dz \Delta_{\epsilon}(x, z) \left[K(z, y) + \epsilon \right] = \delta(x - y)$$
(59)

 Δ_ϵ を ϵ の巾で展開

$$\Delta_{\epsilon} = \Delta + \epsilon \Delta^{(1)} + \cdots$$
 (60)

$$\Delta = K^{-1} = 通常の propagator$$
 (61)

(59)の *e* の一次の項は

$$\epsilon \int dz \left[\Delta(x,z) + \Delta^{(1)}(x,z) \underbrace{\Delta^{-1}_{K}(z,y)}_{K} \right] = 0$$
 (62)

 $\Delta(y,w)$ を掛けてyで積分

$$\int dz \Delta(x,z) \int dy \Delta(y,w) + \Delta^{(1)}(x,w) = 0$$
(63)

ここで $\eta(x) \equiv \int dz \Delta(x,z)$ と定義

$$\Delta^{(1)}(x,y) = -\eta(x)\eta(y) \tag{64}$$

従って、modified propagator は次の構造を持つ:

$$\Delta_{\epsilon}(x,y) = \Delta(x,y) - \epsilon \eta(x) \eta(y) + \mathcal{O}(\epsilon^2)$$
 (65)

 ϵ の一次の項はfactorizeしているので、これをinsertすると、Feynman diagramの対応する line が切断される。

: 示すべきこと: Δ_{ϵ} を用いて構成した $\Gamma_{\epsilon}[\phi]$ において、 $\mathcal{O}(\epsilon)$ で生成 される diagrams が依然としてすべて connected であること。 $\Box \Gamma_{\epsilon}[\phi]$ の構成:

まず $Z_\epsilon[J]$ を $\mathcal{O}(\epsilon)$ まで構成。 作用に付け加えた余分な ϵ に比例する項を考慮すると、

$$egin{split} Z_\epsilon[J] &\equiv e^{iW_\epsilon[J]} = \int \mathcal{D}\phi \left(1 + irac{\epsilon}{2}\int dx dy \phi(x) \phi(y)
ight) e^{i(S+J\cdot\phi)} + \mathcal{O}(\epsilon^2) \ &= \left(1 + irac{\epsilon}{2}\int dx dy rac{1}{i}rac{\delta}{\delta J(x)}rac{1}{i}rac{\delta}{\delta J(y)}
ight) e^{iW[J]} + \cdots \ &= \left(1 + irac{\epsilon}{2}\left[\left(\int dx rac{\delta W}{\delta J(x)}
ight)^2 + rac{1}{i}\int dx dy rac{\delta^2 W}{\delta J(x)\delta J(y)}
ight]
ight) e^{iW[J]} + \cdots \end{split}$$

従って、

$$W_{\epsilon}[J] \simeq W[J] + \frac{\epsilon}{2} \left[\left(\int dx \frac{\delta W}{\delta J(x)} \right)^2 + \frac{1}{i} \int dx dy \frac{\delta^2 W}{\delta J(x) \delta J(y)} \right] \quad (66)$$

 $\mathcal{O}(\epsilon)$ の第一項はdisconnectされているので、 Γ に行くと落ちる。

次にLegendre 変換を行う。

● W[J] が global parameter *ϵ* によっている場合の Legendre 変換の性質: 定義より、

$$\Gamma[\phi] = W[J,\epsilon] - \int dx J(x)\phi(x)$$
(67)

$$\phi(x) = \frac{\delta W[J, \epsilon]}{\delta J(x)} = \epsilon \text{-dependent}$$
(68)

 $\Gamma[\phi]$ を ϵ で微分する。左辺には chain rule を用いる:

$$LHS = \frac{\partial \Gamma}{\partial \epsilon} + \int dx \frac{\partial \phi(x)}{\partial \epsilon} \frac{\delta \Gamma}{\delta \phi(x)}$$
(69)
$$RHS = \frac{\partial W}{\partial \epsilon} - \int dx J(x) \frac{\partial \phi(x)}{\partial \epsilon}$$
(70)

ここで $\epsilon = 0$ とおくと、左辺第二項の $\delta\Gamma/\delta\phi(x)$ は-J(x)に等しくなるから、

$$\left. \frac{\partial \Gamma}{\partial \epsilon} \right|_{\epsilon=0} = \left. \frac{\partial W}{\partial \epsilon} \right|_{\epsilon=0} \tag{71}$$

$$\Rightarrow \epsilon \mathcal{O} - 次 \mathcal{O} 項は \Gamma \& W \, \mathcal{C} 相等 \, U \mathbb{N} \ \mathcal{U} \circ \mathcal{C} \ (66) \, \mathcal{L} \mathcal{U}$$
$$\Gamma_{\epsilon}[\phi] = \Gamma[\phi] + \frac{\epsilon}{2} \int dx dy \phi(x) \phi(y) + \frac{\epsilon}{2i} \int dx dy \frac{\delta^2 W}{\delta J(x) \delta J(y)} + \cdots$$
(72)

第2項はもともとのactionに加えた項であり、無視してよい。 第3項はsourceがある場合のconnected propagatorを表している。

: $- \operatorname{OOD} \mathcal{O} (\epsilon) \mathcal{O} (\epsilon) \mathcal{O} (\epsilon)$ まだ connected になっている。図示すると、

 $従って\Gamma[\phi]$ が1PI diagramの generating function であることが証明された。

8 $\lambda \phi^4$ 理論の摂動論

• $\lambda \phi^4$ 理論を例にとり、摂動論を用いた相関関数の計算を述べる。

8.1 繰り込まれた摂動展開

Bare Lagrangian

$$\mathcal{L}\frac{1}{2}\partial^{\mu}\phi_{0}\partial_{\mu}\phi_{0} - \frac{1}{2}m_{0}^{2}\phi_{0}^{2} - \frac{\lambda_{0}}{4!}\phi_{0}^{4}$$
(1)

Bareな量: $\phi_0, m_0, \lambda_0 =$ 量子補正を取り入れる前の(short distance での)量。 このLagrangian のquadratic part を 0 次のLagrangian と考え、 $\frac{\lambda_0}{4!}\phi_0^4$ 項を摂動 として扱うことが考えられるが、この分解は余り有用でない。

理由: 相互作用のために、場のnormalizationや、couplingの大きさが 各次数で変更を受ける。

通常の量子力学の摂動論でも起こる。 (例: 波動関数の再規格化)。 特にlocal field theoryの場合は、こうした変更が発散を含むのでやっかい。 はじめから、相互作用をいれた結果として正しく規格化されているような 場やcoupling (massも含む)を考え、それを用いて記述するのが便利。 こうした量を<mark>繰り込まれた量(renormalized quantities)</mark>と呼ぶ。

 \square Renormalized Quantities

繰り込まれた (= 再規格化された) 場 ϕ を次のように定義。Z は相互作用 によって生ずる効果を現す。

$$\phi_0 = Z^{1/2} \phi, \qquad Z = 1 + \delta_Z$$
 (2)

 \Rightarrow

$$\mathcal{L} = \frac{1}{2} Z (\partial_{\mu} \phi)^2 - \frac{1}{2} (m_0^2 Z) \phi^2 - \frac{1}{4!} (\lambda_0 Z^2) \phi^4$$
(3)

• 繰り込まれた mass m と coupling constant λ を次のように同定:

$$Z = 1 + \delta_Z \tag{4}$$

$$m_0^2 Z = m^2 + \delta_m \tag{5}$$

$$\lambda_0 Z^2 = \lambda + \delta_\lambda \tag{6}$$

⇒ 繰り込まれた量によるLagrangian

 $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_\lambda + \mathcal{L}_c \tag{7}$

$$\mathcal{L}_{0} = \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} m^{2} \phi^{2}$$
(8)

$$\mathcal{L}_{\lambda} = \frac{\lambda}{4!} \phi^4 \tag{9}$$

$$\mathcal{L}_{c} = \frac{1}{2} \delta_{Z} (\partial_{\mu} \phi)^{2} - \frac{1}{2} \delta_{m} \phi^{2} - \frac{\delta_{\lambda}}{4!} \phi^{4} = \text{counter terms}$$
(10)

- \mathcal{L}_{λ} 及び \mathcal{L}_{c} を相互作用として扱う。
- 繰り込み可能な理論: これだけの counter terms ですべての繰り込みが 処理できる。

□ 繰り込み条件:

 $\phi, m, \lambda = 実際の観測量 \Rightarrow これらの定義を観測と関係づけた形で定義$

● 2点関数、及び4点関数の値を適当な運動量の配位で指定

⇔「繰り込み条件」

そうした条件が満たされるように摂動の各字数で δ_Z, δ_m や δ_λ を調整。 <mark>繰り込み条件の選択</mark>

よく用いられる3種類の繰り込み条件の指定の仕方:

◆ On-shell繰り込み : 実際の観測と最も直接的に対応。

$$G^{(2)}(p)\Big|_{p^{2}=m^{2}} = \frac{i}{p^{2}-m^{2}} + \text{finite}$$
(11)
$$\Gamma^{(4)}(\{p_{i}\})\Big|_{\substack{p_{i}^{2}=m^{2}\\\sum_{i}p_{i}=0}} = \lambda$$
(12)

より便利な2点関数の繰り込み条件の形

 $\Gamma^{(2)}$ に対するものに書き換える。 $G=G^{(2)}=$ full propagator $G_0=$ tree level propagator $\Gamma^{(2)}=m^2$ の補正に対応する vertex

 $\Rightarrow G と \Gamma^{(2)}$ の関係図:

式で表すと

$$G = G_0 + G_0(-i\Gamma^{(2)})G_0 + G_0(-i\Gamma^{(2)})G_0(-i\Gamma^{(2)})G_0$$

= $G_0 \left(1 + (-i\Gamma^{(2)})G_0 + \cdots\right) = G_0 \frac{1}{1 + i\Gamma^{(2)}G_0}$
= $\frac{1}{G_0^{-1} + i\Gamma^{(2)}} = \frac{i}{p^2 - m^2 - \Gamma^{(2)}}$ (13)

$$\Gamma^{(2)}$$
を $p^2 = m^2$ の周りで展開 $\Gamma^{(2)}(p^2) = \Gamma^{(2)}(m^2) + (p^2 - m^2) rac{\partial \Gamma^{(2)}}{\partial p^2}(m^2) + \cdots$ (14)
すると $G^{(2)}(p) = rac{i}{p^2 - m^2 - \Gamma^{(2)}}$ i

$$= \frac{1}{p^2 - m^2 - \Gamma^{(2)}(m^2) - (p^2 - m^2) \frac{\partial \Gamma^{(2)}}{\partial p^2}(m^2) + \cdots}$$

$$\simeq \frac{i}{p^2 - m^2} + \text{finite}$$
(15)

 \Leftrightarrow

4 点 関数の繰り込み条件の追加

4個の運動量からなる独立な scalar 積 $p_i \cdot p_j$ の数 = $4 + \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 10$ 繰り込み条件(12)はこのうち8個しか fix しない。

$$\begin{cases} p_i^2 = m^2, & i = 1 \sim 4 \\ p_4^2 = (p_1 + p_2 + p_3)^2 = m^2, etc & \text{4 equations} \end{cases}$$
(16)

⇒2個の独立量がまだ残っている。

最も便利なMandelstam variablesを用いてこれを確かめる。

$$s \equiv (p_1 + p_2)^2 = p_1^2 + p_2^2 + 2p_1 \cdot p_2 = 2(m^2 + p_1 \cdot p_2) \quad (17)$$

$$t \equiv (p_1 + p_3)^2 = 2(m^2 + p_1 \cdot p_3) \quad (18)$$

$$u \equiv (p_1 + p_4)^2 = 2(m^2 + p_1 \cdot p_4)$$
 (19)

これらの間には

$$s + t + u = 4m^2 \tag{20}$$

なる関係あり。

⇒ 条件 t = u = 0 (従って $s = 4m^2$)をさらに課す。

♦ 0-momentum 繰り込み :

BPHZ(Bogoliubov, Parasiuk, Hepp, Zimmerman) 繰り込み処方で使われる。繰り込み条件はすべて $p_i = 0$ で付ける。 On-shell繰り込み処方とは有限繰り込みで結ばれる。

♦ Euclidean off-shell 繰り込み

Massless 粒子が存在する場合: 上記の二つの繰り込み条件では赤外発 散が生ずる。

解決法: 運動量を Euclidean off-shell に解析接続して $p_i^2 = -\mu^2$ 等の 配位で繰り込み条件をつける。

実験と対応させるためには後で適当な有限繰り込みが必要。

8.2 Feynman diagramの計算に必要な公式

8.2.1 公式集

(証明は後述)

□ Feynman Parameter 積分公式:

$$egin{aligned} &rac{1}{AB} = \int_0^1 dx rac{1}{[Ax+B(1-x)]^2} \ &rac{1}{ABC} = \int_0^1 2y dy \int_0^1 dx rac{1}{[Ayx+By(1-x)+c(1-y)]^3} \ &rac{1}{A_1A_2\cdots A_N} = (N-1)! \int_0^1 \prod_{i=1}^N dlpha_i rac{1}{[\sum_i lpha_i A_i]^N} \delta(1-\sum_i lpha_i) \end{aligned}$$

 $A,B,\dots\sim p^2-m^2$ etc.

□ 次元正則化された運動量積分 (in Minkowski space):

$$\eta \equiv \frac{n}{2}, \quad \alpha = 正の整数$$
 (21)

$$\int \frac{d^n k}{(2\pi)^n} \frac{1}{(k^2 - \Lambda)^{\alpha}} = \frac{(-1)^{\alpha} i}{(4\pi)^{\eta}} \frac{\Gamma(\alpha - \eta)}{\Gamma(\alpha)} \Delta^{-\alpha + \eta}$$
(22)

$$\int \frac{d^n k}{(2\pi)^n} \frac{k^2}{(k^2 - \Delta)^{\alpha}} = \eta \frac{(-1)^{\alpha - 1} i}{(4\pi)^\eta} \frac{\Gamma(\alpha - \eta - 1)}{\Gamma(\alpha)} \Delta^{-\alpha + \eta + 1}$$
(23)

$$\frac{d^{n}k}{(2\pi)^{n}}\frac{k^{\mu}k^{\nu}}{(k^{2}-\Delta)^{\alpha}} = \frac{\eta^{\mu\nu}}{2}\frac{(-1)^{\alpha-1}i}{(4\pi)^{\eta}}\frac{\Gamma(\alpha-\eta-1)}{\Gamma(\alpha)}\Delta^{-\alpha+\eta+1} \quad (24)$$

$$\int \frac{d^{n}k}{(2\pi)^{n}} \frac{(k^{2})^{2}}{(k^{2} - \Delta)^{\alpha}} = \frac{n(n+2)}{2} \frac{(-1)^{\alpha - 1}i}{(4\pi)^{\eta}} \frac{\Gamma(\alpha - \eta - 1)}{\Gamma(\alpha)} \Delta^{-\alpha + \eta + 2}$$
(25)

$$\int \frac{d^{n}k}{(2\pi)^{n}} \frac{k^{\mu_{1}}k^{\mu_{2}}k^{\mu_{3}}k^{\mu_{4}}}{(k^{2}-\Delta)^{\alpha}} = \frac{1}{4} \left(\eta^{\mu_{1}\mu_{2}}\eta^{\mu_{3}\mu_{4}} + \eta^{\mu_{1}\mu_{3}}\eta^{\mu_{2}\mu_{4}} + \eta^{\mu_{1}\mu_{4}}\eta^{\mu_{2}\mu_{3}}\right) \\ \times \frac{(-1)^{\alpha-1}i}{(4\pi)^{\eta}} \frac{\Gamma(\alpha-\eta-2)}{\Gamma(\alpha)} \Delta^{-\alpha+\eta+2}$$
(26)

□ Momentum Cut-offによる正則化 (Euclidean):

$$\int rac{d^4k}{(2\pi)^4} rac{1}{k^2 - \Delta} = rac{i}{16\pi^2} \left(-\Lambda^2 + \Delta \ln rac{\Lambda^2}{\Delta}
ight)
onumber \ \int rac{d^4k}{(2\pi)^4} rac{1}{(k^2 - \Delta)^2} = rac{\partial}{\partial \Delta} \int rac{d^4k}{(2\pi)^4} rac{1}{k^2 - \Delta} = rac{i}{16\pi^2} \left(\ln rac{\Lambda^2}{\Delta} - 1
ight)$$

□ ふたつの方法の比較:

次元正則化で、 $\epsilon \equiv 2 - (n/2)$ (すなわち、 $n = 4 - 2\epsilon$) とおくと、

$$\int rac{d^n k}{(2\pi)^n} rac{1}{k^2 - \Delta} = rac{i}{16\pi^2} \left[\left(rac{1}{\epsilon} + \ln 4\pi - \gamma + 1
ight) \Delta - \Delta \ln \Delta
ight] \ \int rac{d^n k}{(2\pi)^n} rac{1}{(k^2 - \Delta)^2} = rac{i}{16\pi^2} \left(rac{1}{\epsilon} + \ln 4\pi - \gamma - \ln \Delta
ight)$$

運動量正則化と比較すると、次の対応がある:

$$\ln \Lambda^2 \leftrightarrow \frac{1}{\epsilon} + \ln 4\pi - \gamma + 1$$
 (27)

注: 次元正則化では二次発散は捉えられないことに注意。

□ Γ 関数とその性質:

$$\Gamma(z) = \int_0^\infty dt e^{-t} t^{z-1}$$
(28)

$$\Gamma(z+1) = z\Gamma(z) \tag{29}$$

$$\Gamma(1) = 1, \quad \Gamma(1/2) = \sqrt{\pi}$$
 (30)

$$\epsilon \equiv rac{4-n}{2} \ll 1\,, \qquad \gamma = {\sf Euler's\ {\sf constant}} = 0.5772\cdots (31)$$

$$\Gamma(\epsilon) = \frac{1}{\epsilon} - \gamma + \frac{1}{2} \left(\gamma^2 + \frac{\pi^2}{6} \right) \epsilon + \mathcal{O}(\epsilon^2)$$
(32)

$$\Gamma(\epsilon - 1) = -\frac{1}{\epsilon} + (\gamma - 1) - \frac{1}{2} \left(\gamma^2 - 2\gamma + \frac{\pi^2}{6} \right) \epsilon + \mathcal{O}(\epsilon^2) \quad (33)$$

$$\Gamma(\epsilon - n) = \frac{(-1)^n}{n!} \left[\frac{1}{\epsilon} + \left(\sum_{k=1}^n \frac{1}{k} \right) - \gamma \right] + \mathcal{O}(\epsilon)$$
(34)

8.2.2 公式の導出

□ Feyman Parameter 公式の導出: 出発点: "proper-time"積分公式:

$$\frac{1}{A} = \frac{1}{i} \int_0^\infty d\tau e^{i\tau A}, \qquad \mathcal{I}m \, A > 0 \tag{35}$$

これを各因子 $1/A_i$ に対して適用し、最後に δ -function を挿入

$$\frac{1}{A_1 A_2 \cdots A_N} = \frac{1}{i^N} \int_0^\infty \prod_{i=1}^N d\tau_i \exp\left(i \sum_{i=1}^N \tau_i A_i\right)$$
(36)
$$= \frac{1}{i^N} \int_0^\infty d\lambda \int_0^\infty \prod_{i=1}^N d\tau_i \exp\left(i \sum_{i=1}^N \tau_i A_i\right) \delta(\lambda - \sum_i \tau_i)$$
(37)

スケール変換をして新変数 α_i に移る:

$$\tau_i = \lambda \alpha_i \tag{38}$$

 $lpha_i$ はすべて正であり $0 \le lpha_i \le 1$ であるから、 $(\delta(\lambda - \lambda \sum lpha_i) = \frac{1}{\lambda} \delta(1 - \sum lpha_i)$ を用いて)

$$\frac{1}{A_1 A_2 \cdots A_N} = \frac{1}{i^N} \int_0^\infty d\lambda \lambda^N \int_0^1 \prod_{i=1}^N d\alpha_i \exp\left(i\lambda \sum_{i=1}^N \alpha_i A_i\right) \frac{1}{\lambda} \delta(1 - \sum_i \alpha_i)$$
(39)

λ積分は次のように実行できる:

$$\int_{0}^{\infty} d\lambda \lambda^{N-1} e^{i\lambda B} = \left(\frac{1}{i}\frac{\partial}{\partial B}\right)^{N-1} \int_{0}^{\infty} d\lambda e^{i\lambda B}$$
$$= \left(\frac{1}{i}\frac{\partial}{\partial B}\right)^{N-1} \frac{i}{B} = (-i)^{N-1}i(-1)^{N-1}(N-1)!B^{-N}$$
$$= i^{N}(N-1)!B^{-N}$$
(40)

⇒ 基本公式:

$$\frac{1}{A_1 A_2 \cdots A_N} = (N-1)! \int_0^1 \prod_{i=1}^N d\alpha_i \frac{1}{\left[\sum_i \alpha_i A_i\right]^N} \delta(1-\sum_i \alpha_i) \quad (41)$$

注: (36)の段階で、運動量の積分はGaussian。これを実行しても得られる。

□ 次元正則化された運動量積分公式の導出: 基本的積分

$$J \equiv \int d^n k \frac{1}{k^2 - \Delta} \tag{42}$$

● 他の積分はこれを△で微分するか、またはテンソル構造に対する置
 き換えをすれば得られる。

(1) k₀積分を分離

$$J = \int_{-\infty}^{\infty} dk_0 d^{n-1} k \frac{1}{k_0^2 - (\vec{k}^2 + \Delta - i\epsilon)}$$
(43)

極は $k_0 = \pm(\sqrt{\vec{k}^2 + \Delta} - i\epsilon)$ にある。 積分は上半平面および下半平面の無限遠の境界で十分に早く damp する ⇒ 積分路を上半平面で閉じるようにして極 $k_0 = -\sqrt{\vec{k}^2 + \Delta} + i\epsilon$ から の寄与をひろう。

 \Downarrow

$$egin{aligned} J &= rac{2\pi}{i}rac{1}{2}\int d^{n-1}krac{1}{\sqrt{ec{k}^2+\Delta}-i\epsilon} \ &= rac{\pi}{i}\int d\Omega_{n-2}\int_0^\infty \omega^{n-2}d\omegarac{1}{\sqrt{\omega^2+\Delta}}, \qquad (\omega^2=ec{k}^2) \end{aligned}$$

$$\int d\Omega_{n-2} = S^{n-2} \mathcal{O} 表面積 = \frac{2\pi^{(n-1)/2}}{\Gamma((n-1)/2)}$$
(44)

 $\omega = \sqrt{\Delta} t$ とおくと、J は次のように書き換えられる:

$$J = \frac{\pi}{i} \frac{2\pi^{(n-1)/2}}{\Gamma((n-1)/2)} \Delta^{(n-2)/2} \int_0^\infty dt \frac{t^{n-2}}{\sqrt{t^2+1}}$$
(45)

t積分はn < 2のとき収束。この領域で計算して結果を解析接続。 積分を実行するには、 $t = \tan \theta$ とおけばよい。

 \Downarrow

$$\begin{split} \int_0^\infty dt \frac{t^{n-2}}{\sqrt{t^2+1}} &= \int_0^{\pi/2} d\theta \sin^{n-2} \theta \cos^{1-n} \theta = \frac{1}{2} B\left(\frac{n-1}{2}, \frac{2-n}{2}\right) \\ &= \frac{1}{2} \frac{\Gamma(\eta - \frac{1}{2}) \Gamma(1-\eta)}{\Gamma(\frac{1}{2})} \,, \qquad \left(B(x,y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} = \text{Euler's beta} \right) \end{split}$$

これより次の公式を得る:

$$J = \frac{\pi^{\eta}}{i} \Gamma(1-\eta) \Delta^{\eta-1}$$
(46)

□ Momentum Cut-off 法の公式の導出:

基本的積分

$$J_1 \equiv \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 - \Delta}, \qquad \mathcal{I}m\,\Delta < 0 \tag{47}$$

 k_0 積分に関する極: $k_0 = \pm \left(\sqrt{\vec{k}^2 + \Delta} - i\epsilon\right)$ 実軸に沿った積分路を反時計回りに回して極に出会わずに虚軸に沿った積分路にすることができる。 $\Rightarrow k_0 = i\tilde{k}_0 \Rightarrow 1 - 2$ リッド空間での積分

$$J_{1} = \int \frac{d^{3}k}{(2\pi)^{4}} \int_{-\infty}^{\infty} i d\tilde{k}_{0} \frac{-1}{k_{E}^{2} + \Delta} = \frac{1}{i} \int \frac{d^{4}k_{E}}{(2\pi)^{4}} \frac{1}{k_{E}^{2} + \Delta}$$
(48)

角度積分 = 単位球 S^3 の面積 = $2\pi^2$ $u = k^2$ とおき、u積分にcut offを入れる:

$$J_{1} = \frac{1}{i} \frac{2\pi^{2}}{(2\pi)^{4}} \frac{1}{2} \int_{0}^{\Lambda^{2}} du \frac{u}{u + \Delta}$$

$$= \frac{1}{i} \frac{1}{16\pi^{2}} \left(\Lambda^{2} - \Delta \ln \left(\frac{\Lambda^{2} + \Delta}{\Delta} \right) \right)$$

$$\sim \frac{1}{i} \frac{1}{16\pi^{2}} \left(\Lambda^{2} - \Delta \ln \frac{\Lambda^{2}}{\Delta} \right)$$
(49)

□ Pauli-Villarsのregulator 法:

Pauli and Villars, Rev. Mod. Phys. 21 (1949) 434

質量mの粒子が内線を回るUV発散するグラフ

$$I(m) = \int d^4k J(k,m)$$
(50)

⇒ 質量mを(large) M_i に代えた同じグラフの寄与を適当に重み付けして加えることにより、有限な積分を定義:

$$I_R(m, \{M_i\}) = I(m) + \sum_i C_i I(M_i)$$
$$= \int d^4k \left(J(k, m) + \sum_i C_i J(k, M_i) \right) = \text{finite} \quad (51)$$

 C_i を調節して $I_R(m, \{M_i\})$ を有限にする。 最終的に $M_i \rightarrow \infty$ の極限をとる。

このグラフの寄与

$$I(m) = \int rac{d^4k}{(2\pi)^4} rac{1}{k^2 - m^2} rac{1}{(k+p)^2 - m^2} \sim ext{log divergent}$$

重い粒子が回る寄与を差し引いて有限にする:

$$egin{aligned} I_R(m,M) &= I(m) - I(M) \ &= \int rac{d^4k}{(2\pi)^4} igg(rac{1}{k^2 - m^2} rac{1}{(k+p)^2 - m^2} - rac{1}{k^2 - M^2} rac{1}{(k+p)^2 - M^2}igg) \end{aligned}$$

被積分関数を通分すると

分子
$$= (k^2 - M^2)((k+p)^2 - M^2) - (k^2 - m^2)((k+p)^2 - m^2)$$

 $= (m^2 - M^2)(k^2 + (k+p)^2) - M^4 - m^4 = \mathcal{O}(k^2)$

分母は k^8 で振る舞う $\Rightarrow \int d^4k k^2/k^8 \sim \int d^4k/k^6$ となり UV で収束。

 $I_R(m,M)$ は $M o \infty$ の極限で $\ln M^2/m^2$ で発散する。

- 発散部分は運動量 p に依らない。
- これを取り出すには k = Muとscale するとよい。 このとき log 発散は $u^2 \sim m^2/M^2$ の領域から生ずる。
- 8.3 1-Loop レベルでの繰り込み
- □ 2 点 関数:

1-loop \mathcal{O} diagram :

Symmetry factor:

$$\phi_1\phi_2\left(rac{-i\lambda}{4!}\phi_3^4
ight)\mathcal{O}$$
 contraction $\Rightarrow 4 imes 3/4! = 1/2$.

Dimensional regularization を用いる $(n=4-2\epsilon=2\eta)$

$$-iM^{(2)} \equiv \frac{-i\lambda}{2} \int \frac{d^{n}k}{(2\pi)^{n}} \frac{i}{k^{2} - m^{2} + i\epsilon} 2\% \hbar$$

$$= \frac{-i\lambda}{2} i \frac{(-1)^{1}i}{(4\pi)^{\eta}} \frac{\Gamma(1-\eta)}{\Gamma(1)} (m^{2})^{-1+\eta}$$

$$= -i \frac{\lambda}{2} \frac{1}{16\pi^{2}} (4\pi)^{\epsilon} \Gamma(\epsilon - 1) (m^{2})^{1-\epsilon}$$

$$= -i \frac{\lambda m^{2}}{32\pi^{2}} (1 + \epsilon \ln 4\pi) \left(-\frac{1}{\epsilon} + \gamma - 1\right) (1 - \epsilon \ln m^{2})$$

$$= -i \frac{\lambda m^{2}}{32\pi^{2}} \left(-\frac{1}{\epsilon} + \gamma - 1 - \ln 4\pi + \ln m^{2}\right)$$
(52)

注: 発散項 $1/\epsilon \Leftrightarrow$ momentum cut-offの計算では $\ln \Lambda^2$ Dimensional regularization では 二次発散 ~ Λ^2 は見えない.

繰り込み条件:

$$\Gamma^{(2)} = M^{(2)} + \delta_m - p^2 \delta_Z = \mathcal{O}((p^2 - m^2)^2)$$
 (53)

 $M^{(2)}$ は p^2 に依らない $\Rightarrow \delta_Z = 0, \delta_m = -M^{(2)}$ ととれば満たされる。

□ 1PI 4 点 関数:

4点のダイアグラム:

symmetry factor

 $\phi_1\phi_2\phi_3\phi_4(-i\lambda/4!)^2\phi_5^4\phi_6^4$ において、 $\phi_1 \leftrightarrow p_1 \phi_2 \leftrightarrow p_2$ etc とおいて contraction の数を勘定。 $\phi_1\phi_2$ と contract する vertex \mathcal{O} choice: 2通り (ϕ_5^4 or ϕ_6^4) これを ϕ_5 とすると、 $\phi_1 - \phi_5$: 4通り $\phi_2 - \phi_5$ 3通り 同様に、 $\phi_3 - \phi_6$ 、 $\phi_4 - \phi_6$ \mathcal{O} contraction 4×3 通り $\phi_5 - \phi_6$ \mathcal{O} contraction: 2通り $\leftarrow \phi_5^2\phi_6^2$ 2次の摂動であることからくる 1/2! factor と合わせると、

$$\frac{1}{2} \times \frac{1}{4!} \times \frac{1}{4!} \times 4 \times 3 \times 4 \times 3 \times 2 \times 2 = \frac{1}{2}$$
(54)

t, u channel も同様。

1PI s-channel amplitudeの計算: $p = p_1 + p_2, s = p^2$

$$-i\Gamma_{s}^{(4)}=rac{(-i\lambda)^{2}}{2}\intrac{d^{n}k}{(2\pi)^{n}}rac{i}{k^{2}-m^{2}}rac{i}{(k+p)^{2}-m^{2}}\equiv(-i\lambda)^{2}iV(p^{2})$$

Feyman parameter 公式

$$rac{1}{AB}=\int_0^1rac{dx}{[Ax+B(1-x)]^2}$$

を用い、分母の中身を展開してから kに関して平方完成

$$egin{aligned} V(p^2) &= rac{i}{2} \int_0^1 dx \int rac{d^n k}{(2\pi)^n} rac{1}{[(k^2-m^2)(1-x)+((k+p)^2-m^2)x]^2} \ &= rac{i}{2} \int_0^1 dx \int rac{d^n l}{(2\pi)^n} rac{1}{[l^2+x(1-x)p^2-m^2]^2} & (l=k+xp) \end{aligned}$$

 $\Delta\equiv m^2-x(1-x)p^2$ とおいて、dimensional regularization formula を適用:

$$egin{aligned} V(p^2) &= rac{i}{2} \int_0^1 dx \int rac{d^n l}{(2\pi)^n} rac{1}{[l^2 - \Delta]^2} \ &= rac{i}{2} \int_0^1 dx rac{(-1)^2 i \Gamma(2 - \eta)}{(4\pi)^\eta \Gamma(2)} \Delta^{-(2 - \eta)} \ &= -rac{1}{32\pi^2} \int_0^1 dx \Gamma(\epsilon) (4\pi)^\epsilon \Delta^{-\epsilon} \ &= -rac{1}{32\pi^2} \int_0^1 dx \left(rac{1}{\epsilon} - \gamma + \ln 4\pi - \ln(m^2 - x(1 - x)p^2)
ight) \end{aligned}$$

t, u channel からの寄与、及び counter term δ_λ を加える

⇒ 1-loop までの4 点関数の表式

$$\Gamma^{(4)} = \lambda + \lambda^2 (V(s) + V(t) + V(u)) + \delta_{\lambda} \quad (55)$$

 δ_λ は、 $s=4m^2,t=u=0$ での繰り込み条件 $\Gamma^{(4)}(p_i^2=m^2)=\lambda$ で定まる

$$egin{aligned} \delta_\lambda &= -\lambda^2 (V(4m^2) + 2V(0)) \ &= rac{\lambda^2}{32\pi^2} \int_0^1 dx \left(rac{3}{\epsilon} - 3\gamma + 3\ln 4\pi - \ln(m^2 - x(1-x)4m^2) - 2\ln m^2
ight) \end{aligned}$$

□ 0-momentum subtraction との比較:

 $\delta_{\lambda,0} \equiv 0$ -momentum subtraction での counter term 繰り込み条件は s = t = u = 0 でつけるから $\delta_{\lambda,0} = -3\lambda^2 V(0) = \delta_{\lambda} + \lambda^2 [V(4m^2) - V(0)]$ (56) : $\delta_{\lambda} \ge \delta_{\lambda,0}$ は<u>有限繰り込み</u>で結ばれている。 □ 高エネルギーでの振る舞い:

例: Large s behavior

 $s
ightarrow \infty$ の極限で

$$\Gamma^{(4)} \sim \frac{\lambda^2}{32\pi^2} \int_0^1 dx \ln \frac{m^2 - x(1-x)s}{\underbrace{m^2 - x(1-x)4m^2}_{\text{from } \delta_{\lambda}}}$$
$$\sim \frac{\lambda^2}{32\pi^2} \ln \frac{s}{m^2} + \text{finite} \tag{57}$$

運動量cut-offの方法で計算すると、この対数的振る舞いが、 $\ln(\Lambda^2/m^2)$ に呼応して出てきていることがわかる。 これは繰り込み群と密接に関係している。

8.4 BPHZの subtractive な繰り込み処方

 $F_{\Gamma} =$ Feynman 図 Γ に対応する振幅

$$F_{\Gamma} = \int d^4k_1 \cdots d^4k_m I_{\Gamma}$$
 $I_{\Gamma} =$ Feynman rules で定義された integrand

BPHZ schemeの特徴: Integrand に対する操作 $I_{\Gamma} \rightarrow R_{\Gamma}$ によって、各 diagram 毎にその 有限部分 F_{Γ} を構成:

finite part of
$$F_{\Gamma} = \int d^4 k_1 \cdots d^4 k_m R_{\Gamma}$$

 $I_{\Gamma} \rightarrow R_{\Gamma}$ の操作はcounter termsを付けることと同値であることを示すことができる。

8.4.1 *R*_Γの構成法

□ 予備的な定義と例:

(i) 繰り込み部分 γ : Proper (*i.e.* 1PI)な diagrams で見かけ上発散するもの(superficially divergent)。すなわち発散次数 $d(\gamma) \ge 0$.

(ii) $\gamma_1 \geq \gamma_2 \text{$ *i* $disjoint: } \gamma_1 \cap \gamma_2 = \emptyset \Leftrightarrow 両$ 者が共通の line を持たない。

(iii) **Overlapping:** $\gamma_1 \circ \gamma_2$: 次がいずれも成 り立たない場合を言う。

$$\gamma_1 \subseteq \gamma_2\,, \hspace{1em} \gamma_1 \supseteq \gamma_2\,, \hspace{1em} \gamma_1 \cap \gamma_2 = \emptyset$$

(iv) Reduced diagram $\Gamma / \{\gamma_1, \ldots, \gamma_c\}$:

 $\{\gamma_1, \dots, \gamma_c\} = \Gamma$ の disjoint かつ connected な部分図。 これらの γ_j を点に縮約 \Rightarrow reduced diagram $\Gamma / \{\gamma_1, \dots, \gamma_c\}$

(v) Taylor operator t_d^{γ} : 着目している diagram γ の外線運動量 $\{p_i\}$ に対して、最初のd + 1次の Taylor 展開の項を与える演算子

$$egin{aligned} t_d^\gamma f(\{p_i\}) &= \left. f(\{p_i\})
ight|_{p_i=0} + p_j^\mu rac{\partial}{\partial p_j^\mu} f(\{p_i\})
ight|_{p_i=0} \ &+ \cdots \ &+ rac{1}{d!} \sum p_{j_1
u_1} \cdots p_{j_d
u_d} rac{\partial^d}{\partial p_{j_1
u_1} \cdots \partial p_{j_d
u_d}} f(\{p_i\})
ight|_{p_i=0} \ &t_d^\gamma &\equiv 0 \quad ext{ if } d < 0 \ , \quad -t_d^\gamma &\equiv 1 \quad ext{ if } \gamma = \emptyset \end{aligned}$$

(vi) Γ -forest $U \in \mathcal{U}$: U は次の性質を満たす diagram の 集合

- (a) $\gamma \in U$ は Γ の繰り込み部分。
- (b) 任意の二つの元 $\gamma_1, \gamma_2 \in U$ は non-overlappling。
- (c) *U*は空集合 {Ø} であってもよい。

Full forest: Uは Γ 自体を含む。 Normal forest: Uは Γ を含まない。 $\begin{array}{l} \Gamma \text{-forests (normal forests):} \\ \{\gamma_1\} \ , \{\gamma_2\} \ , \{\gamma_1, \gamma_2\} \ , \{\emptyset\} \end{array}$

 \square Bogoliubov \mathcal{O} *R*-operation:

- Bogoliubov: I_{Γ} から R_{Γ} を構成する規則を与えた。
- BPH etc.: この処方で Feynman amplitude の有限部分が定義されることを証明。

(i) \overline{R}_{Γ} を recursive に次の様に定義:

$$\overline{R}_{\Gamma} = I_{\Gamma} + \sum_{\{\gamma_1, \gamma_2, \dots, \gamma_c\}} I_{\Gamma/\{\gamma_1, \gamma_2, \dots, \gamma_c\}} \prod_{\tau=1}^c (-t^{\gamma_\tau}) \overline{R}_{\gamma_\tau}$$
(58)

(ii) Γ が subdiagram として繰り込み部分を全く含まないときは

$$\overline{R}_{\Gamma} = I_{\Gamma}$$

次に R_{Γ} 自体を次のように定義:

(iii) Γ 自体が繰り込み部分でないならば

$$R_{\Gamma}\,=\,\overline{R}_{\Gamma}$$

(iv) Γ 自体が繰り込み部分ならば最後に全体の引き算をする:

$$R_{\Gamma}\,=\,(1-t^{\Gamma})\overline{R}_{\Gamma}$$

例: $\{\gamma_1, \gamma_2, \dots, \gamma_c\}$ としては $\{\gamma_1\}, \{\gamma_2\}, \{\gamma_1, \gamma_2\}$ があるから

□ Zimmermann's Forest Formula:

 γ_1

Zimmermann はBogoliubovの公式をより便利な形に書き換えることに成功した。

$$R_{\Gamma}\,=\,\sum_{U\in \mathcal{U}(\Gamma)}\prod_{\gamma\in U}\left(-t^{\gamma}
ight)I_{\Gamma}$$

□ 例1:::

$$\frac{\sum_{j=1}^{N} \gamma_{1}}{\sum_{j=1}^{N} \gamma_{2}} \sum_{j=1}^{N} \gamma_{2}$$

Overlapping divergence がある場合 Renormalization parts: $\gamma_1, \gamma_2, \Gamma$ Γ -forests: $\{\gamma_1\}, \{\gamma_2\}, \{\Gamma\}, \{\Gamma, \gamma_1\}, \{\Gamma, \gamma_2\}, \{\emptyset\}$ $\{\gamma_1, \gamma_2\}$ は許されないことに注意。

$$egin{aligned} R_{\Gamma} &= \left(1-t^{\gamma_1}-t^{\gamma_2}-t^{\Gamma}+t^{\Gamma}t^{\gamma_1}+t^{\Gamma}t^{\gamma_2}
ight)I_{\Gamma} \ &= \left(1-t^{\Gamma}
ight)\left(1-t^{\gamma_1}-t^{\gamma_2}
ight)I_{\Gamma} \end{aligned}$$

Renormalization parts: γ_1, γ_2

 $egin{aligned} \Gamma ext{-forests:} & \{\gamma_1\}\;,\{\gamma_2\}\;,\{\gamma_1,\gamma_2\}\;,\{\emptyset\}\ & R_{\Gamma}\,=\,(1-t^{\gamma_1}-t^{\gamma_2}+t^{\gamma_1}t^{\gamma_2})\,I_{\Gamma}\ & =\,(1-t^{\gamma_1})\,(1-t^{\gamma_2})\,I_{\Gamma} \end{aligned}$

□ Forest formula の導出:

基本的には R-operationの公式における和の rearrangement

R operation: 全体の subtranction は特別に扱われている

⇒ Zimmermannの R_{Γ} 公式中の $\mathcal{U}(\Gamma)$ (すべての Γ -forestの集合)を $\overline{\mathcal{U}}(\Gamma)$ (Γ) 自体を含まない normal forestの集合)に置き換えたものとして \overline{S}_{Γ} を定義:

$$\overline{oldsymbol{S}}_{\Gamma}\,\equiv\,\sum_{U\in\overline{oldsymbol{\mathcal{U}}}(\Gamma)}\prod_{\gamma\in U}\left(-t^{\gamma}
ight)I_{\Gamma}$$

qft1-8-35

各 normal forest $U \in \overline{\mathcal{U}}(\Gamma)$ に対して、 **maximal set of elements**{ $\gamma_1, \gamma_2, \dots, \gamma_c$ } $\equiv 互いにdisjoint である renormalization partsの集合$ を identify することができる。

⇒ Renormalization partsの和の取り方を、次のように組み替える: (i) まず各 γ_{τ} の中の parts を加える (ii) 次に可能なすべての maximal sets { $\gamma_1, \gamma_2, \dots, \gamma_c$ } について足し挙げる これを式に表すと ("1" は empty forest の寄与)

$$\sum_{U\in\overline{\mathcal{U}}(\Gamma)}\prod_{\gamma\in U}\left(-t^{\gamma}\right) \,=\, 1+\sum_{\{\gamma_1,\gamma_2,...,\gamma_c\}}\prod_{\tau=1}^c \left\{\left(-t^{\gamma_\tau}\right)\left\lfloor\sum_{U_\tau\in\overline{\mathcal{U}}(\gamma_\tau)}\prod_{\lambda_\tau\in U_\tau}\left(-t^{\lambda_\tau}\right)\right\rfloor\right\}$$

このoperatorを被積分関数

$$I_{\Gamma} \,=\, I_{\Gamma/\{\gamma_1,\gamma_2,...,\gamma_c\}} \left[\prod_{ au=1}^c I_{oldsymbol{I}_{ au}}
ight]$$

に働かせる。

赤で表示した部分は併せて $\overline{S}_{\gamma_{\tau}}$ を与えるから、

$$\overline{S}_{\Gamma} \,=\, I_{\Gamma} + \sum_{\{\gamma_1,\gamma_2,...,\gamma_c\}} I_{\Gamma/\{\gamma_1,\gamma_2,...,\gamma_c\}} \prod_{ au=1}^c (-t^{\gamma_ au}) \overline{S}_{m{\gamma_ au}}$$

これは \overline{R}_{Γ} の定義式に他ならない $\Rightarrow \overline{S}_{\Gamma} = \overline{R}_{\Gamma}$

• Γ が renormalization part でないとき: $R_{\Gamma} = \overline{R}_{\Gamma} \Rightarrow$ Zimmermann の 公式

• Γ が renormalization part のとき: full forest に対する和 = normal forests と Γ を normal forests に加えたものの union

$$egin{aligned} R_{\Gamma} &= \left(1-t^{\Gamma}
ight)\overline{R}_{\Gamma} \ &= \sum_{U\in\overline{\mathcal{U}}(\Gamma)} \left(1-t^{\Gamma}
ight)\prod_{\gamma\in U}\left(-t^{\gamma}
ight)I_{\Gamma} &= \sum_{U\in\mathcal{U}(\Gamma)}\prod_{\gamma\in U}\left(-t^{\gamma}
ight)I_{\Gamma} ~~// \end{aligned}$$

8.5 2-Loop レベルでの繰り込み

□ 2 点 関数 :

グラフは、次の式の contraction から生じ、2種類ある:

$$\frac{1}{2}\phi_{1}\phi_{2}\left(\frac{-i\lambda}{4!}\phi_{3}^{4}\right)\left(\frac{-i\lambda}{4!}\phi_{4}^{4}\right)$$

$$(59)$$

$$(59)$$

$$\begin{pmatrix}\gamma_{1} \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{4} \\ \gamma_{2} \\ \gamma_{2} \\ \gamma_{2} \\ \gamma_{4} \\ \gamma_{2} \\ \gamma_{2} \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{4} \\ \gamma_{2} \\ \gamma_{2} \\ \gamma_{4} \\ \gamma_{5} \\ \gamma_{5} \\ \gamma_{6} \\ \gamma_{7} \\ \gamma_{1} \\ \gamma_{2} \\ \gamma_{2} \\ \gamma_{2} \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{4} \\ \gamma_{2} \\ \gamma_{4} \\ \gamma_{5} \\ \gamma_{5} \\ \gamma_{5} \\ \gamma_{5} \\ \gamma_{5} \\ \gamma_{5} \\ \gamma_{6} \\ \gamma_{7} \\ \gamma_{2} \\ \gamma_{2} \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{4} \\ \gamma_{5} \\ \gamma_$$

 Type (A):
 1と2を直接 contract する場合。

 Symmetry factor は、1-2をどちらの vertex と contract するか、この vertex の4

 legs と1-2の contraction, また残りの2本の legs ともう一方の vertex の4本の

leg との contraction の仕方、を考えると容易に

$$\frac{1}{2} \times \frac{1}{4!} \times \frac{1}{4!} \times 4 \times 3 \times 4 \times 3 \times 2 = \frac{1}{4}$$
(60)

このグラフに対する counter terms は次の3種類:

はじめの二つのグラフの symmetry factor は 1-loop の場合とおなじであるから、各々 1/2.

<u>Type (B)</u>: 1-3-4-2 または 1-4-3-2 の2通りの contraction がある。前者に 注目すると

- 1-3 の contraction 4 通り
- 2-4 の contraction 4 通り
- 3-4 の contraction 3! = 6 通り

全体の factor は

$$(-i\lambda)^2 \times \frac{1}{2} \times \frac{1}{4!} \times \frac{1}{4!} \times 4 \times 4 \times 6 \times 2 = \frac{(-i\lambda)^2}{6}$$
(61)

これに対する counter graphs は、type A に対する第1および第3 graphs と同 じもの(共通)

□ BPHZ subtraction schemeとの比較:

BPHZ scheme:

renormalization part: $\gamma_1, \gamma_2, \Gamma$ Γ -forest: $\{\phi\}, \{\gamma_1\}, \{\gamma_2\}, \{\Gamma\}, \{\gamma_1, \Gamma\}, \{\gamma_2, \Gamma\}$ Zimmermann's formula

$$R_{\Gamma} = (1 - t^{\Gamma})(1 - t^{\gamma_1} - t^{\gamma_2})I_{\Gamma}$$
(62)

⇔ 上部と下部の4点部分の発散を引いて、しかる後に残りの全体の発散を 引く。

注: 上部、下部の発散はあくまでもこのグラフの発散部分であって、1-loop の counter term を引いているのではない。

BPHZ scheme ではあくまでも一つ一つのグラフを有限にする操作を行う。 その操作の総体が結果として counter term の論理で引き算するものと同じ になっている
具体的計算 (type (B)):

$$A_{\Gamma} = \frac{(-i\lambda)^2}{6} i^3 I_{\Gamma} \tag{63}$$

$$I_{\Gamma} = \frac{1}{k^2 - m^2} \frac{1}{l^2 - m^2} \frac{1}{(k + p - l)^2 - m^2}$$
(64)

$$t^{\gamma_1} I_{\Gamma} = \frac{1}{k^2 - m^2} \frac{1}{k^2 - m^2} \frac{1}{l^2 - m^2} = \text{indep of } p \tag{65}$$

$$t^{\gamma_2}I_{\Gamma} = \frac{1}{k^2 - m^2} \frac{1}{l^2 - m^2} \frac{1}{l^2 - m^2} = \text{indep of } p \tag{66}$$

Overall subtractionは、見かけ上の発散の次数が2であるので、Taylor展開の 最初の2項を引けばよい。

$$\frac{\partial}{\partial p^{\mu}} \frac{1}{(k+p-l)^2 - m^2} \bigg|_{p=0} = -\frac{2(k-l)_{\mu}}{((k-l)^2 - m^2)^2}$$
(67)

これより

$$(1 - t^{\Gamma})I_{\Gamma} = \frac{1}{k^2 - m^2} \frac{1}{l^2 - m^2} \left(\frac{1}{(k + p - l)^2 - m^2} - \frac{1}{(k - l)^2 - m^2} + \frac{2(k - l) \cdot p}{((k - l)^2 - m^2)^2}\right)$$
(68)

□ 4 点関数:

2-loop 4 点 関数は次の表式の contraction から生ずる:

$$\frac{1}{3!}\phi_1\phi_2\phi_3\phi_4\left(\frac{-i\lambda}{4!}\phi_5^4\right)\left(\frac{-i\lambda}{4!}\phi_6^4\right)\left(\frac{-i\lambda}{4!}\phi_7^4\right) \tag{69}$$

Diagram としては次の2種類のタイプがgenerate される。

数字は "s-channel" を与えるうちの一つの contraction を表している。

Type (A) Symmetry factorの勘定:

- 1,2がどのvertexとcontract するか 3通り
- 3,4 がどの vertex と contract するか 2 通り
- 1と5のcontraction 4通り
- 2と5のcontraction 3通り
- 3と7のcontraction 4通り
- 4と7のcontraction 3通り

5の残りの足のうちの1つと6のcontraction 4通り 5のもう一つの足と6のcontraction 3通り 6と7のcontraction 2通り 従って全体のsymmetry factor は

$$\frac{1}{3!} \times \left(\frac{1}{4!}\right)^3 \times 3! \times \frac{4!}{2} \times \frac{4!}{2} \times 4! = \frac{1}{4}$$
(70)

Type (B)

Symmetry factorの勘定: 外線の番号を決めたときには1/4を得る。 しかし、このdiagramの場合は左右が非対称なので、外線の番号の決め方 がtype Bに比べて2倍あることに注意。

Counter term より生ずる2つの1-loop グラフ: symmetry factor は各々 1/4.

● 実際の 2-loopの計算は込み入っているので省略する。