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1 Constraints and flows in the phase space

1.1 Flows generated by constraints and the geometric meaning of
the Poisson bracket

2 The set up:

We consider a dynamical system described in a 2n-dimensional phase space M :

M = 2n-dimensional phase space

xµ = xµ(qi, pi) , i = 1 ∼ n: a set of local coordinates of M

Suppose the system is subject to a constraint defined by the equation

f(x) = c = constant (1)

This defines a (2n − 1)-dimensional hypersurface in M , to be denoted by
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Σf .

2 A flow on Σf :

Consider an infinitesimal move on the surface Σf . Then, we have

f(x + dx) − f(x) = ∂µfdxµ = 0 (2)

Since dxµ is tangential to Σf , ∂µf is a vector normal to Σf .

As we continue this development along the surface, we should get a flow on Σf

of the form xµ(u) with u a parameter of the flow.

f(x) = constant

Σf

xµ(u)

To generate such a flow, we must make sure that dxµ is always normal to ∂µf .

This can be guranteed if there exists an antisymmetric tensor ωµν(x) on

M . Then we can set
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dxµ = ωµν∂νf du (3)

This obviously satisfies the requirement dxµ∂µf = 0.

The vector field which generates this flow is defined as

Xω
f ≡ (ωµν∂νf) ∂µ (4)

so that (3) can be written as

dxµ = (Xω
f xµ)du (5)

For a fixed ωµν, we will often omit the superscript ω and write Xf for short.

We will call this flow Ff .
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2 Variation along the flow and the Poisson bracket:

Now consider how an arbitrary function g(x) varies along the flow Ff . It is

given by

g(x + dx) = g(x) + duXfg(x)

= g(x) + duωµν∂νf∂µg

= g(x) + du∂µgωµν∂νf

= g(x) + du{g, f} , (6)

where we have defined the Poisson bracket1

{g, f} ≡ Xfg = ∂µgωµν∂νf = − {f, g} = −Xgf . (7)

1This should actually be called “pre-Poisson bracket”. For true Poisson bracket, we need the require-
ments for ωµν to be discussed below.
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(Strictly speaking, for this to be called a Poisson bracket, ωµν must satisfy certain

properties to be discussed below.)

In any case, the Poisson bracket {g, f} describes the infinitesimal

change of g along a flow Ff on Σf . The basic formula is

dg

du
= {g, f} (8)

2 Requirements on ωµν:

(1): As we have seen, once ωµν is given, to a function f(x) we can associate

a unique flow Ff on the surface Σf .
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We wish to achieve the converse, namely we want a flow to determine

the family of surfaces f(x) = c on which it exists. That is, we want

to be able to solve
dxµ

du
= ωµν∂νf (9)

for f(x) up to a constant. Obviously the condition is that ωµν is non-

degenerate (invertible).

When ωµν is non-degenerate, we will denote its inverse by ωµν:

ωµνωνρ = δµ
ρ . (10)

Then it is natural to define the following 2-form

ω ≡ 1
2
ωµνdxµ ∧ dxν , (11)

ωµν = ω(∂µ, ∂ν) (12)
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The Poisson bracket can then be written as

{f, g} = ω(Xg, Xf) (13)

since

ω(Xg, Xf) = ω(ωµν∂νg∂µ, ωαβ∂βf∂α)

= ωµν∂νgωµαωαβ∂βf

= ∂µfωµν∂νg (14)

(2): To be relevant to physical problems, ωµν should not be arbitrary. We

require that there exists a coordinate system (qi, pi) such that ω takes the

standard form

ω =
n∑

i=1

dpi ∧ dqi . (15)
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This amounts to

ωpiqj
= δij , ωqjpi

= −δij (16)

ωpiqj = −δij , ωqjpi = δij (17)

Thus, in this coordinate system, the Poisson bracket takes the familiar form:

{f, g} = ∂µfωµν∂νg

=
∑

i

(
∂f

∂qi

∂g

∂pi

− ∂g

∂qi

∂f

∂pi

)
(18)

In particular,
{
qi, pj

}
= δi

j (19)

It is obvious that in this coordinate system ω is closed i.e. dω = 0.

• Since this is a coordinate independent concept, we must demand that it

be true in any coordinate system.

As we shall see shortly, this will be quite essential for the Poisson bracket to have
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the desired properties. In tensor notation, the closedness reads

dω = 1
2
∂ρωµνdxρ ∧ dxµ ∧ dxν , (20)

s ss 0 = ∂ρωµν + cyclic permutations . (21)

A non-degenerate and closed 2-form ω is called a symplectic form

or a symplectic structure. An even-dimensional manifold endowed with a

symplectic form is called a symplectic manifold.
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2 Properties of the Poisson Bracket:

We now prove the following basic properties of the Poisson brackets:

(1) {f, g} = {f, xµ} ∂µg (22)

(2) {f, g} = − {g, f} ⇔ Xgf = −Xfg (23)

(3) {f, gh} = {f, g} h + g {f, h} (24)

(4) X{g,f} = [Xf , Xg] (25)

(5) {f, {g, h}} + cyclic = 0 (26)

(1) and (2) are obvious from the definition. (3) is easy to prove using the vector

field notation. Once (4) is proved, then (5) is automatic. So, the only non-trivial

property to be proved is (4).

Proof of (4): We will give a basis independent derivation below and leave

the proof in terms of components as an exercise.
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(1) First it is easy to prove that for any vector field Y , we have the identity

(∗) ω(Y, Xf) = Y (f) (27)

Indeed, writing Y = Y α∂α,

ω(Y, Xf) = ω(Y α∂α, ωµν∂νf∂µ)

= Y αωαµωµν∂νf = Y α∂αf = Y (f) (28)

(2) Next we recall the basis-independent definition of the exterior deriva-

tive operator d. On a p-form ω,

dω(X1, X2, . . . , Xp+1)

≡
p+1∑

i=1

(−1)1+iXi

(
ω(X1, . . . , X̌i, . . . , Xp+1)

)

+
∑

i<j

(−1)i+jω([Xi, Xj] , X1, . . . , X̌i, . . . , X̌j, . . . , Xp+1)

(29)
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where X̌i means that it be deleted.

For p = 0, i.e. when ω is just a function, one defines

dω(X) = X(ω) (30)

For p = 1 the formula takes the form

dω(X, Y ) = X(ω(Y )) − Y (ω(X)) − ω([X, Y ]) (31)

Let us check this by comparing it to the usual component calculation.

Set ω = ωνdxν, X = Xα∂α, Y = Y β∂β. Then the component calculation

goes as follows:

dω = ∂µωνdxµdxν = 1
2
(∂µων − ∂νωµ)dxµdxν (32)

s ss dω(X, Y ) = 1
2
(∂µων − ∂νωµ)dxµdxν(Xα∂α, Y β∂β)

= 1
2
(∂µων − ∂νωµ)(X

µY ν − XνY µ) (33)
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On the other hand, we have

X(ω(Y )) = Xα∂α(ωνY
ν) = Xα∂αωνY

ν + Xαων∂αY ν (34)

−Y (ω(X)) = −Y β∂βωνX
ν − Y βων∂βXν (35)

−ω([X, Y ]) = −ω((Xα∂αY β)∂β − (Y β∂βXα)∂α)

= Xα∂αY βωβ + Y β∂βXαωα (36)

So the last term of the RHS of (31) removes the derivatives on Xα and Y β and

we get

RHS of (31) = ∂µων(X
µY ν − Y µXν)

= LHS of (31)

(3) Now apply this to our 2-form ω in the following way and impose the closed-
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ness condition:

0 = dω(Y, Xf , Xg)

= Y (ω(Xf , Xg)) − Xf(ω(Y, Xg)) + Xg(ω(Y, Xf))

−ω([Y, Xf ] , Xg) − ω([Xf , Xg] , Y ) + ω([Y, Xg] , Xf)

(37)

where Y is an arbitrary vector field. The first term can be written in the following

two ways

(i) Y (ω(Xf , Xg)) = Y ({g, f}) = ω(Y, X{g,f}) = −ω(X{g,f}, Y )

(ii) Y (ω(Xf , Xg)) = Y (Xf(g)) = −Y (Xg(f))

= 1
2
(Y (Xf(g)) − Y (Xg(f)))

Forming 2 × (ii) − (i) we have

Y (ω(Xf , Xg)) = Y (Xf(g)) − Y (Xg(f)) + ω(X{g,f}, Y )

(38)
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The rest of the terms can be rewritten in the following way

Xf(ω(Y, Xg)) = Xf(Y (g)) (39)

Xg(ω(Y, Xf)) = Xg(Y (f)) (40)

ω([Y, Xf ] , Xg) = [Y, Xf ] (g) (41)

ω([Y, Xg] , Xf) = [Y, Xg] (f) (42)

Combining all the terms, many of the terms cancel and we are left with

0 = ω(X{g,f}, Y ) − ω([Xf , Xg] , Y )

= ω(X{g,f} − [Xf , Xg] , Y ) (43)

Since Y is arbitrary and ω is non-degenerate, we must have X{g,f}−[Xf , Xg] =

0, which proves the assertion. //

Exercise: Give a proof in terms of components.
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1.2 Hamiltonian vector field, gauge symmetry and gauge-fixing

2 Hamiltonian vector field and the equation of motion:

Consider now the Hamiltonian function H(x) of a dynamical system.

For a conservative system, H(x) stays constant, and we can apply the above

general consideration with f(x) = H(x).

Thus, a flow is generated by the associated Hamiltonian vector field XH on

the surface ΣH . When talking about a flow generated by XH , we normally use

t as the parameter. Using the general formula (8), we obtain the equation of

motion for any physical quantity g(x)

dg

dt
= XHg = {g, H} (44)

constsys-21



2 Compatibility of H and the constraint:

Now consider the situation where we have a constraint φ(x) = 0, which is

different from the Hamiltonian constraint.

Actually, we must consider the set of functions of the form

Φ ≡ {χ(x)|χ(x) = α(x)φ(x)} (45)

where α(x) is an arbitrary function non-vanishing and non-singular on the con-

straint surface Σφ. Then, any member of Φ vanishes on the surface Σφ and

generates essentially the same flow as φ.

Now when the system develops according to the Hamiotonian H(x), it should

not leave Σφ. Otherwise, the imposition of the constraint would be incompatible

with the Hamiltonian.

So for compatibility, we must require that after an infinitesimal time the change
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of the constraint function should vanish on Σφ. This is expressed by

dφ

dt
= {φ, H} ∈ Φ (46)

When this holds, we say that {φ, H} is weakly zero and denote it by

{φ, H} ∼ 0.

Since the surface Σφ is generated by any member of the set Φ, we must also

have

∀χ ∈ Φ {χ, H} ∼ 0 . (47)

Indeed this is guaranteed: Since χ can be written as χ = α(x)φ(x), we get

{αφ, H} = {α, H} φ + α {φ, H} ∼ 0 . (48)

Similarly, it is easy to show that

χ1 ∼ 0 , χ2 ∼ 0 −→ {χ1, χ2} ∼ 0 (49)
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(Proof: χi ∼ 0 ↔ χi = αiφ. Then, {α1χ1, α2χ2} clearly vanishes on

Σφ. )

2 Equivalence relation on Σφ and gauge symmetry:

When we impose a constraint φ(x) = 0, the dimension of the phase space

drops by 1.

However, from the point of view of (p, q) conjugate pair, the physical degrees

of freedom should drop by 2, not just by 1.

Indeed this can happen due to the following mechanism.

Let ψ(x) ∈ Φ. Then ψ generates a flow on Σφ given by

dxµ = {xµ, ψ} du . (50)

The important point is that flows generated by any memeber of Φ are actually

the same. Let χ = αψ be another member. Then the flow generated by χ,
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with a parameter v, is described by the equation

dxµ = {xµ, χ} dv = ({xµ, α} ψ + α {xµ, ψ})dv = {xµ, ψ} αdv

(51)

This shows that, apart from the redefinition of the parameter u, the

trajectory is the same.

Furthermore, since {ψ, H} ∈ Φ, Φ as a set is invariant under time develop-

ment. Thus, the shape of the flow does not change in time t.

Thus, all the points on a flow generated by Φ describe the same physi-

cal state from the point of view of the Hamiltonian dynamics and they

should be identified.

Hence, the bonafide physical phase space P is the quotient space

P = ΣΦ/ ∼ , dim P = 2n − 2 . (52)

where ∼ denotes the equivalence relation just described. Thus Φ generates

gauge transformations on the dynamical variable xµ in the manner
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δαxµ = α(x) {xµ, φ}

2 Idea of Gauge Fixing:

Let us call our constraint φ1(x).

Each point in P is described by a representative of Σφ1.

To pick one out, one may try to intersect Σφ1 by another hypersurface generated

by an additional constraint φ2(x) = 0.

To guarantee that this picks out a single point on the flow generated by φ1, we

must demand that the value of φ2(x) changes monotonically along the flow
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Fφ1. This is condition is expressed by

{
φ2, φ1

}
=

dφ2

du
6= 0 never crosses zero (53)

This procedure of introducing such an additional constraint φ2(x) is called

gauge fixing.

1.3 Flow in the physical space and the Dirac bracket

The Poisson bracket {g, f} describes an infinitesimal flow of g generated by the

function f . (In this context, the function f(x) need not be a geuine constraint

of the dynamical system.)

Suppose we have genuine constraints φa = 0, (a = 1, 2) as above. We may

still consider the flow {g, f} generated by f .

But in general the flow gets out of the physical space P = ΣΦ/ ∼.

We now explain a convenient way of generating a flow in the physical phase space.
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It would be very nice if we can invent a new bracket which generates a

flow that stays in the physical space. This is achieved by the so-called the

Dirac bracket, to be deonoted by {g, f}D.

¨ First we have the following property:

f(x) generates a flow on P ⇐⇒ {φa, f} = 0 , (a = 1, 2).

Proof: This follows immediately from dφ/du = {φa, f}. If the flow stays

on P , then cleary the conditions φa = 0 does not change and we have {φa, f} =

0. Conversely, {φa, f} = 0 means that along the flow dφa/du = 0 and hence

φa = 0 conditions are preserved.
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¨ Next, the desired bracket should have the following properties:

1. For f(x) satisfying {φa, f} = 0, we want

{g, f}D = {g, f} . (54)

2. When {φa, f} 6= 0, the bracket should automatically drop the part of the

movement which gets out of the constraint surface. Specifically, we want

{φa, f}D = 0 . (55)

3. The bracket should satisfy all the basic properties of the Poisson bracket.

The bracket satisfying all these requirements is given by
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{g, f}D ≡ {g, f} − {g, φa} Cab

{
φb, f

}
, (56)

Cab ≡ {
φa, φb

}
anti-symmeric, non-degenerate

Cab = inverse of Cab (57)

The second term subtracts precisely the portion which gets out of the physical

space. We will see this more explicitly in the next section.

In the meantime, let us check that the properties 1,2,3 are met.

• Property 1 is obvious.
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• Property 2:

{φa, f}D ≡ {φa, f} − {
φa, φb

}
︸ ︷︷ ︸

Cab

Cbc {φc, f}

= {φa, f} − {φa, f} = 0 (58)

Excercise: Check the property 3

¨ Since {φa, f}D = 0 for any function f(x), we can set φa strongly

(identically) to zero when we use the Dirac bracket.

constsys-31



2 Meaning of the Dirac bracket and the physical Hamiltonian

HP :

We now wish to make the meaning of the Dirac bracket clearer and construct

the physical Hamiltonian which directly acts on the physical phase space P .

This is achieved by employing a convenient coordinate system, to be described

below.

First we recall that the Poisson bracket is basis independent as seen from the

expression {f, g} = ω(Xg, Xf). So we may take a special coordinate

system yµ(x) where two of the new coordinates coincide with the

constraints:

xµ −→ yµ(x) , (59)

µ =

{
a a = 1, 2
i i = 3, 4, . . . , 2n

(60)

ya(x) = φa(x) (61)
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Further, we choose yi such that ωai
y =

{
ya, yi

}
=

{
φa, yi

}
= 0.

This should be possible since this condition simply says that yi(x) generates a

flow on the physical space P .

Indeed if
{
ya, yi

}
= ωia

y 6= 0, then redefine yi as

ỹi ≡ yi − ωib
y Cbcy

c (62)

Then, (omitting the subscript y on ωia)

{
ỹi, ya

}
= ωia − ωibCbcC

ca = 0 (63)

In this coordinate system ωµν takes the form

ωµν =

(
ωab 0
0 ωij

)
(64)

Now we call

U = unphysical space spanned by {ya}
P = physical spaces spanned by {yi}
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Because of the block diagonal form of ωµν, we have

{g, f} = {g, f}U + {g, f}P . (65)

It is easy to prove the identity

{g, f} = {g, yµ} ωµν {yν, f} (66)

= {g, φa} Cab

{
φb, f

}
+

{
g, yi

}
ωij

{
yj, f

}
(67)

Thus we can identify

{g, f}P =
{
g, yi

}
ωij

{
yj, f

}
(68)

{g, f}U = {g, φa} Cab

{
φb, f

}
(69)

Setting g = φa in this identity, we find

{φa, f}P =
{
φa, yi

}
ωij

{
yj, f

}

= ωaiωij

{
yj, f

}
= 0 (70)

{φa, f}U =
{
φa, φb

}
ωbc {φc, f}

=
{
φa, φb

}
Cbc {φc, f} 6= 0 (71)
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So {φa, f}P has precisely the property of the Dirac bracket. In other words, the

Dirac bracket is nothing but the bracket in the physical space. Namely

{g, f}D = {g, f} − {g, f}U

= {g, f} − {g, φa} Cab

{
φb, f

}
(72)

which is exactly the definition introduced before.

¨ If we adopt this special coordinate system, it is clear that the physical Hamil-

tonian is

HP = H(y1 = y2 = 0, yi) . (73)

and the symplectic structure to be used is

ωP ≡ 1
2
ωijdyidyj (74)

We then get

dyi

dt
=

{
yi, HP

}ωP (75)
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But the same result can be obtained in any coordinate system if we use the Dirac

bracket and set φa = 0 strongly. Indeed

dya

dt
= {ya, H}D = {φa, H}D = 0 (76)

dyi

dt
=

{
yi, H

}
D

|ya=0 =
{
yi, yj

}
ωij

{
yj, H

} |ya=0

=
{
yi, HP

}ωP (77)

Thus we always get correct equations of motion by using the Dirac bracket.
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2 Systems with multiple constraints

2.1 Multiple constraints and their algebra

From now on, we fix the symplectic structure and take the basis xµ = (qi, pi), i =

1, 2, . . . , n such that ω is of the standard form ω =
∑n

i=1 dpi ∧ dqi.

¨ Suppose we have m independent bosonic constraints 2

Tα(x) = 0, α = 1, 2, . . . , m (78)

The constrained surface will then be 2n − m dimensional.

• In order for any flow generated by these constraints to remain on this surface,

all the Poisson bracket among them must be weakly zero.

• Also, for these constraints to be consistent with the time evolution, theirPoisson
2The case where fermionic constraints are present can also be handled, but for simplicity, we shall not

do that here. In what follows, we use the BFV convention and use subscripts for the constraint indices.
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bracket with the Hamiltonian, which we write H0, must vanish weakly as well.

In other words, Tα’s and H0 must satisfy an involutive algebra of the form

{Tα, Tβ} = TγUγ
αβ , (79)

{H0, Tα} = TβV β
α , (80)

• Uγ
αβ and V β

α are in general functions of (qi, pi)

• Hence the above need not be a Lie algebra. (In fact for gravity this situation

occurs.)

We shall call this algebra the algebra of constraints. In Dirac’s terminology

Tα’s are called the first class constraints.
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2.2 Analysis using the Action Integral

2 Invariance of the action under the transformations generated

by the constraints:

The action for the constrained system defined above can be written in two ways:

(i) S [q, p] =

∫
dt

(
piq̇

i − H0

)∣∣∣∣
T=0

(81)

(ii) S [q, p, λ] =

∫
dt

(
piq̇

i − H0 + λαTα

)
(82)

where in the second expression λα are the Lagrange multipliers.

(1) First let us check that the action (i) is invariant under the gauge trans-

formations generated by the constraints.

Denoting by εα(p, q) the infinitesimal local parameters, the transformations are
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expressed as

δqi =
{
qi, Tα

}
εα , (83)

δpi = {pi, Tα} εα . (84)

If the point (pi, qi) is on the constrained surface, it stays on the surface un-

der these variations because they are generated by the constraints. The action

changes by

δS =

∫
dt

(
δpiq̇

i + piδq̇i − δH0

)∣∣∣∣
T=0

. (85)

Now for the last term,

δH0 = {H0, Tα} εα ∼ 0 ( on the T = 0 surface) (86)
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due to the constraint algebra. As for the first and the second terms,

δpiq̇
i = {pi, Tα} εαq̇i = −∂Tα

∂qi
q̇iεα (87)

piδq̇i = −ṗi

{
qi, Tα

}
εα = −∂Tα

∂pi

ṗiε
α , (88)

s ss δpiq̇
i + piδq̇i = −Ṫαεα = − d

dt
(Tαεα) + Tα︸︷︷︸

0

ε̇α (89)

(In the second equation above, we used the integration by parts under
∫

dt. )

So for the variations that vanish at the initial and the final time this vanishes

upon integration on the T = 0 surface.

Thus S is invariant. Since the classical trajectories are obtained by extremizing the

action, this shows that various trajectories which differ by the variations

generated by the constraints all satisfy the equations of motion.

(2) Next consider the variation of S [q, p, λ]. This time, we cannot use

the equations Tα = 0.
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Using the previous results and the integration by parts, we get

δpiq̇
i + piδq̇i = −Ṫαεα = Tαε̇α , (90)

−δH0 = − {H0, Tα} εα = −TαV α
β εβ , (91)

δ(λαTα) = δλαTα + λα {Tα, Tβ} εβ

= δλαTα + λαTγUγ
αβεβ . (92)

So δS [q, p, λ] vanishes if we define the variation of λα as

δλα = −ε̇α + V α
ν εν − λβUα

βγεγ . (93)

It should be noted that in the case of the usual gauge theory this is

precisely of the form of the familiar gauge transformation .

(for λα ∼ Aa
0 with V α

ν = 0) .
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2 Gauge Fixing:

Just like in the case of a single constraint, we add m additional constraints to

pick out the true physical phase space:

Θα(pi, qi) = 0 α = 1, 2, . . . , m . (94)

Since the new surface must intersect the original constraint sufrace we need to

require

δΘα = {Θα, Tβ} εβ 6= 0 ∀α, ∀εβ . (95)

so that on any tranjectory the value of Θα must be changing.

In other words, the matrix {Θα, Tβ} need not have zero eigenvalue. Thus we

demand

det {Θα, Tβ} 6= 0 (96)

Note that Θα’s do not form any involutive algebra.
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Let us collect all the 2m constraints and define

Ta =

(
Tα

Θβ

)
, (97)

Cab = {Ta, Tb} . (98)

Then by looking at the structure of Cab one can show that det C 6= 0.

Excercise Prove this fact.

To enforce the additional constraints, we introduce m Lagrange multipliers λ̄β

for Θβ. The action can be written as

S
[
q, p, λ, λ̄

]
=

∫
dt

(
piq̇

i − H0 + λαTα + λ̄αΘα
)

(99)

=

∫
dt

(
piq̇

i − H0 + ξaTa

)
, (100)

where ξa =

(
λα

λ̄β

)
(101)
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The dimension of the physical space is 2(n − m).

2 Equations of motion and emergence of the Dirac bracket:

Variations with respect to q, p and ξ lead to the following equations of motion:

δpi : 0 = q̇i − ∂H0

∂pi

+
∂Ta

∂pi

ξa , (102)

δqi : 0 = −ṗi − ∂H0

∂qi
+

∂Ta

∂qi
ξa , (103)

δξa : 0 = Ta(p, q) . (104)

Since the last condition should not change in time, we have

0 =
dTa

dt
= ṗi

∂Ta

∂pi

+ q̇i∂Ta

∂qi
. (105)
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Substituting the expressions for ṗi and q̇i, this becomes

0 =

(
−∂H0

∂qi
+

∂Tb

∂qi
ξb

)
∂Ta

∂pi

+

(
∂H0

∂pi

− ∂Tb

∂pi

ξb

)
∂Ta

∂qi

= − {H0, Ta} − {Ta, Tb} ξb

= − {H0, Ta} − Cabξ
b . (106)

Since the matrix Cab is invertible we can solve for ξa uniquely and get

ξa = Cab {Tb, H0} . (107)

Putting this back into the equations of motion, we find

q̇i =
{
qi, H0

} − {
qi, Ta

}
Cab {Tb, H0}

=
{
qi, H0

}
D

, (108)

ṗi = {pi, H0} − {pi, Ta} Cab {Tb, H0}
= {pi, H0}D . (109)

Therefore, the equations of motion are generated precisely by the Dirac

bracket.
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3 Dirac’s theory of constrained systems

Up until now we have been considering constrained Hamiltonian systems. We

now study how constraints arise in Lagrangian formulation.

Questions:

¨ When do we get constraints?

¨ How to find constraints systematically?

Dirac’s theory gives the answer.

3.1 Singular Lagrangian and primary constraints

2 Singular Lagrangian:
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Consider a Lagrangian of the form

L = 1
2
q̇iaij(q)q̇j + q̇ibi(q) − V (q) (110)

aij = aji symmetric (111)

The momentum conjugate to qi is

pi = aij(q)q̇j + bi(q) , (112)

or aij(q)q̇j = pi − bi(q) . (113)

When the matrix aij(q) is singular, then q̇ cannot be solved in terms of p

uniquely. Such a Lagrangian is called singular.

In this case, aij(q) has zero eigenvalues. Let vi
a (a = 1, 2, . . . , m1) be zero

eigenvectors. Then,

0 = vi
aaij(q) = vi

a (pi − bi(q)) ≡ φa(p, q) , (114)

and we have so called the primary constraints.

¨ They arise entirely from the definition of the momenta and therefore may not

be compatible with the equations of motion.
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Special but important case of a singular Lagrangian:

First order system: It may sometimes happen that aij = 0 so that there

are no quadratic kinetic term. In this case, we get the primary constraints of the

form

pi − bi(q) = 0 (115)

This occurs for the Dirac equation, which therefore is a constrained system.

We will describe how it should be properly quantized later.

2 Canonical Hamiltonian:

Lte us construct the Hamiltonian in the usual way:

Hcan = piq̇
i − L(q, q̇) (116)

It is called the canonical Hamiltonian. As is well known, Hcan is a function
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only of p and q and does not depend on q̇. To check this, take the variation:

δHcan = δpiq̇
i + piδq̇i − ∂L

∂qi
δqi − ∂L

∂q̇i
δq̇i

= q̇iδpi − ∂L

∂qi
δqi . (117)

Hence δq̇i does not appear in δHcan and we have ∂Hcan/∂q̇i = 0.

3.2 Compatibility of the primary constraints and the Hamiltonian

Previously, we assumed the compatibility of the constraints φa with the Hamil-

tonian H , which is expressed as

{φa, H} ∼ 0 . (118)

If it is not automatically met, we have to impose these conditions for a consis-

tent theory.

This in general produces further constraints.

constsys-50



To perform this analysis, we must note that because of the existence of the

primary constraints the following Hamiltonian, called the total Hamiltonian, is

as good as the canonical one:

HT = Hcan + λa(p, q)φa(p, q) (119)

In fact, its variation δHT is identical to δHcan because φa = δφa = 03 and

the solutions of the equations of motions derived from HT for any λa extremize

the action. The equations of motion read, after setting φa = 0,

q̇i =
∂Hcan

∂pi

+ λa∂φa

∂pi

, (120)

ṗi = −∂Hcan

∂qi
− λa∂φa

∂qi
. (121)

Remembering that Poisson brackets are computed without enforcing constraints,

3Since φa = 0 should be enforced, its variation must also be zero. In other words, the variation must
be such that δφa = 0 must hold.
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we can write this as

q̇i =
{
qi, Hcan

}
+ λa

{
qi, φa

}
, (122)

ṗi = {pi, Hcan} + λa {pi, φa} . (123)

In the sense of weak equality, this can be written also as

q̇i ∼ {
qi, HT

}
, (124)

ṗi ∼ {pi, HT} . (125)

Compatibility with HT :

Now we check the compatibility, i.e. , the invariance of the constraint surface,

call it Σ1, as the system evolves according to HT . This reads

(∗) 0 ∼ {φa, HT} = {φa, Hcan} + λb {φa, φb} . (126)

Let the rank of {φa, φb} on Σ1 be r1. Then by forming appropriate linear
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combinations of {φa}, we can bring it to the form

{φa, φb} =

(
Cαβ 0
0 0

)
, (127)

φa = (φα, φA) , (128)

α = 1, 2, . . . , r1 , A = r1 + 1, . . . , m1 (129)

(i) For the subspace corresponding to the subscript α, we can use the inverse of

Cαβ to solve for the mulitiplier from (∗):

λα = −Cαβ {φβ, Hcan} (130)

(Cαβ = (C−1)αβ) (131)

(ii) For the subspace corresponding to the subscript A, (∗) demands the com-

patibility

{φA, Hcan} ∼ 0 . (132)

LHS can contain parts which cannot be written as a linear combination of pri-

mary constraints.
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Then we must impose certain number, m2 of secondary constraints. Con-

straint surface now becomes a more restricted one Σ1+2.

At this stage, primary and the secondary constraints must be re-

garded on the same footing and we re-set

φa = all the constraints a = 1, 2, . . . , m1 + m2 , (133)

and repeat the analysis again with of course new HT .

Continue until no new constraints are generated.

¨ For a system with a finite degrees of freedom, this process obviously terminates

after a finite number of steps.

¨ In the case of field theory, where we have infinite degrees of freedom, it

may require infinite steps. However, we only need finite steps if the Poisson

brackets always contain δ(~x − ~y) so that we only get local constraints.
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¨ We then end up with m constraints

φa : a + 1, 2, . . . , m (134)

m = m1 + m2 + · · · ≤ 2n (135)

(2n = dim. of the original phase space)

r = r1 + r2 + · · · ≤ m . (136)

Using (130), the total Hamiltonian will be of the form

HT = Hcan − φαCαβ {φβ, Hcan} + φAλA (137)

It is easy to check that for all the constraints, Poisson bracket with HT produces

a linear combination of constraints and hence weakly vanish:

{φa, HT} = φbV
b

a ∼ 0 . (138)
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3.3 1st and 2nd class functions and quantization procedure

It is important to introduce the notion of the first and the second class

functions (constraints).

A function R(q, p) is classified as either 1st class or 2nd class according to:

1st class ⇐⇒ {R, φa} ∼ 0 for all constraints φa

⇐⇒ {R, φa} = φbr
b
a (139)

2nd class ⇐⇒ otherwise (140)

Then we have

Theorem:

R, S : 1st class =⇒ {R, S} : 1st class (141)

Proof is easy using the Jacobi identity for Poisson bracket. Thus the 1st class

constraints form a closed (involutive) algebra under Poisson bracket oper-

ation.
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2 Quantization with the second class constraints:

There are several methods:

¨ (1) Solve the second class constraints explicitly and eliminate unphysical

coordinates.

However, in general this is difficult and spoils manifest symmetries.

¨ (2) Use the Dirac bracket (as discussed in Chapter 2) and replace it with

the quantum bracket in the following way:

quantum bracket =
[
qi, pj

] ≡ i~
{
qi, pj

}
D

(142)

¨ (3) Use path-integral formalism as already discussed.

2 Quantization with the first class constraints:

Since 1st class constraints generate gauge transformations, we must either fix

the gauge or select gauge invariant physical states by imposing these constraints.
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More explicitly,

1. Add gauge-fixing constraints to make them second class and then

use the methods above.

2. Replace the usual Poisson bracket with quantum bracket (with appropriate i~
factor) and then impose them on physical states.

φA|Ψ〉 = 0 (143)

In this approach, operator ordering is an important problem.

For compatibility, we must have

[φa, φb] |Ψ〉 = 0 (144)

and for this purpose, one must find an ordering such that

[φa, φb] = U c
abφc (145)

holds i.e. φc appears to the right of U c
ab.
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When there does not exist any such ordering, then the system becoms incon-

sistent and it is said to possess quantum commutator anomaly.

3.4 Application to abelian gauge theory

We now apply the Dirac’s theory to the Maxwell field and see how it works.

2 Analysis of constraints:

Lagrangian:

L = −1

4

∫
d3xFµνF

µν (146)

Fµν = ∂µAν − ∂νAµ (147)

Momentum Πµ conjugate to Aµ:
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Vary with respect to Ȧµ:

δL = −1
2

∫
d3xF µνδFµν

3 −
∫

d3xF µ0δFµ0 3
∫

d3xF µ0δȦµ (148)

Therefore we get

(?) Πµ = F µ0 (149)

Equal time Poisson bracket:

{Aµ(x), Πν(y)} = δν
µδ(x − y) (150)

where x means ~x and the δ-function is the 3-dimensional one.

Now from (?) above, we get the following primary constraint since F 00 = 0:

Π0 = 0 (151)
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Form of Hcan:

Hcan =

∫
d3xΠµAµ,0 − L

=

∫
d3x


F i0Ai,0︸ ︷︷ ︸

(∗)

+
1

4
F ijFij + 1

2
F i0Fi0


 (152)

Rewrite (∗):

(∗) = F i0(Ai,0 − A0,i) + F i0A0,i = −F i0Fi0 + F i0A0,i (153)

Putting this back in and using the definition of the momentum we get

Hcan =

∫
d3x

(
1

4
F ijFij + 1

2
ΠiΠi − A0∂iΠ

i

)
(154)

Compatibility of Π0 = 0 with Hcan:

We must demand
{
Π0, Hcan

} ∼ 0. This immediately gives the Gauss law

constraint as a secondary constraint:
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G ≡ ∂iΠ
i = 0 (155)

Compatibility of G = 0 with Hcan:

Prepare some formulas

{A0(x), G(y)} = 0 (156){
Π0(x), G(y)

}
= 0 (157)

{Ai(x), G(y)} =
δ

δΠi(x)
G(y) = ∂y

i δ(x − y) (158)

{
Πi(x), G(y)

}
= − δ

δAi(x)
G(y) = 0 (159)

{G(x), G(y)} = 0 (160)

¨ Note that the second equation tells us that the multiplier λ in the term λG
in HT is not determined.
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HT is given by

HT = Hcan + λG (161)

Taking the Poisson bracket with Π0, we get

{
Π0, HT

}
=

{
Π0, Hcan

}
+ λ ↗{Π0, G}

(162)

so that λ is not determined.

¨ The 3rd equation expresses the gauge transformation of Ai. Indeed, intro-

ducing the gauge parameter Λ(y), we have
{

Ai(x),

∫
G(y)Λ(y)

}
=

∫
dyΛ(y)∂y

i δ(x − y)

= −
∫

dy∂iΛ(y)δ(x − y) = −∂iΛ(x)

(163)
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Now let us compute {Hcan, G(y)} making use of these formulas.

{Hcan, G(y)} =

∫
d3x

{
1

4
F jkFjk(x) + 1

2
ΠiΠi(x), G(y)

}

=

∫
d3x1

2
F jk(x) {Fjk(x), G(y)} (164)

But

{Fjk(x), G(y)} = {∂jAk(x) − ∂kAj(x), G(y)}
= ∂x

j {Ak(x), G(y)} − ∂x
k {Aj(x), G(y)}

= ∂x
j ∂y

kδ(x − y) − ∂x
k∂y

j δ(x − y)

= −∂x
j ∂y

kδ(x − y) + ∂x
k∂x

j δ(x − y) = 0 (165)

Thus we have {Hcan, G(y)} = 0 identically and no new constraints are gen-

erated. So actually Hcan is already HT .
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2 Coulomb gauge-fixing and the Dirac bracket:

Let us denote the two 1st class constraints by

φ1(x) = Π0(x) = 0 (166)

φ3(x) = G(x) = 0 (167)

Let us take the Coulomb gauge by adding the following two additional con-

straints:

φ2(x) = A0(x) = 0 (168)

φ4(x) = ∂iA
i(x) = 0 (169)

Non-vanishing Poisson brackets among them are

{φ1(x), φ2(x)} = −δ(x − y) (170)

{φ3(x), φ4(x)} =
{
∂iΠ

i(x), ∂jA
j(y)

}

= ∂x
i ∂y

j

{
Πi(x), Aj(y)

}
= ∂x

i ∂y
j (−δ(x − y))

= ∂2
xδ(x − y) (171)
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Therefore

Cab(x, y) = {φa(x), φb(y)} =

(
A 0
0 B

)
(172)

where A =

(
0 −δ(x − y)

δ(x − y) 0

)
(173)

B =

(
0 ∂2

xδ(x − y)
−∂2

xδ(x − y) 0

)
(174)

It’s inverse is given by

Cab(x, y) =

(
A−1 0
0 B−1

)

A−1 =

(
0 δ(x − y)

−δ(x − y) 0

)
= −A (175)

B−1 =

(
0 −D(x − y)

D(x − y) 0

)
(176)

where ∂2
xD(x − y) = δ(x − y) (177)
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Now we can compute the basic Dirac bracket:

{
Ai(x), Πj(y)

}
D

= δi
jδ(x − y)

−
∫

d3ud3v
{
Ai(x), φa(u)

}
Cab(u, v) {φb(v), Πj(y)}

= δi
jδ(x − y)

−
∫

d3ud3v
{
Ai(x), φ3(u)

}
C34(u, v) {φ4(v), Πj(y)}

= δi
jδ(x − y)

−
∫

d3ud3v
(−∂i

xδ(x − u)
)
(−D(u − v))

(
−∂y

j δ(v − y)
)

= δi
jδ(x − y) − δi

xδx
j D(x − y)

=

(
δi

j − ∂i∂j

∂2

)
δ(x − y) = transverse δ-function

(178)

We can check that the gauge condition and the Gauss law are satisfied due to
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the transversality of the δ-function:

∂x
i

{
Ai(x), Πj(y)

}
D

= 0 (179)

∂j
y

{
Ai(x), Πj(y)

}
D

= 0 (180)

4 More general formulation of Batalin, Fradkin and Vilko-
visky

4.1 General gauge fixing, including relativistic gauges

A big problem with the formulation using the Dirac bracket:

One cannot handle relativistic gauge fixing.

Example : Lorentz gauge in QED. The constraint is

Θ = ∂µAµ = Ȧ0 + ∂iA
i = 0 . (181)

This involves a time derivative of a mulitiplier A0.
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( Recall that no time derivative of A0 appears in the Lagrangian and, when the

Hamiltonian is formed, A0 appears as the Lagrange multiplier for the Gauss law

constraint.)

Thus, in a relativistic formulation, we want to consider a general gauge fixing

function of the form

Θα = Θα(q, p, λ, λ̇, λ̄) , (182)

where λ corresponds to A0 and we may want to take λ̄α to be the

mulitiplier for Θα itself.

So one writes down the action

S
[
q, p, λ, λ̄

]
=

∫
dt

(
piq̇

i − H0 + λαTα(q, p) + λ̄αΘα(q, p, λ, λ̇, λ̄)
)

.

(183)

But in this form, in general λ̄α is no longer a multiplier since it may

appear also in Θα.
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More crucially, λα and λ̄α (α = 1 ∼ m) can become conjugate

to each other. In such a case, the dimension of the phase space becomes

2(n + m) and not the correct value 2(n − m). (2n =the original dim.

of the phase space. )

We must consider a mechanism to kill 4m excess degrees of freedom.

4.2 Introduction of the ghost system

For definiteness, we shall deal with the gauge fixing constraint of the form

Θα = λ̇α + Fα(q, p, λ, λ̄) . (184)

The action then becomes

S
[
q, p, λ, λ̄

]
=

∫
dt

(
piq̇

i + λ̄αλ̇α − H0 + λαTα + λ̄αFα
)

(185)
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Note that clearly the λ̄α are momenta conjugate to λα.

Now group various functions in the following way:

qA = (qi, λα) , A = 1, 2, . . . , n + m (186)

pA = (pi, λ̄α) , (187)

Ga = (Tα, iλ̄α) , (188)

χa = (iλα, Fα) . (189)

Then the action can be written more compactly as

S
[
qA, pA

]
=

∫
dt

(
pAq̇A − H0 − iGaχ

a
)

(190)

To kill the unwanted degrees of freedom, we introduce 2m fermionic ghost-

anti-ghost conjugate pairs:
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(ηa, ℘a) , a = 1, 2, . . . , 2m , (191)

{ηa, ℘b} = δa
b ,

{
ηa, ηb

}
= {℘a, ℘b} = 0

(192)

Later, we will often use the further decomposition of (ηa, ℘a),

ηa = (ηα, η̃α) , α = 1 ∼ m

℘a = (℘α, ℘̃α)

2 Graded Poisson bracket:

To deal with the fermionic degrees of freedom, we need to generalize the concept

of Poisson bracket. The general definition of graded-Poisson bracket is

{F, G} ≡ (∂F/∂QA)(∂/∂PA)G − (−1)|F ||G|(∂G/∂QA)(∂/∂PA)F ,

|F | =

{
0 F is bosonic
1 F is fermionic

, (193)
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where (∂F/∂QA) represents the right-derivative F
←−
∂

∂QA . So more explicit

representation is

{F, G} ≡ F

←−
∂

∂QA

−→
∂

∂PA

G − (−1)|F ||G|G
←−
∂

∂QA

−→
∂

∂PA

F (194)

(QA, PA) denotes all the conjugate pairs including ghosts, λα and

λ̄α. This definition is consistent with the Poisson brackets for ηa and ℘b given

above.

An important property of the graded Poisson bracket is the graded Jacobi

identity. It can be written as

{A, {B, C}} = {{A, B} , C} + (−1)|A||B| {B, {A, C}} .

(195)

Exercise: Check this property. (It is rather non-trivial.)
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4.3 Batalin-Vilkovisky theorem

Now we modify our action by adding
∫

dt(℘aη̇
a − ∆H) :

S =

∫
dt

(
pAq̇A + ℘aη̇

a − H
)

, (196)

H = H0 + iGaχ
a + ∆H . (197)

The problem is to find the appropriate ∆H which makes this

system equivalent to the canonical system described solely in

terms of the physical degrees of freedom.

The basic theorem for solving this problem is the following due to Batalin and

Vilkovisky:
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4.3.1 BV Theorem

Assume that the set of functions Ga are algebraically independent4 and

satisfy the involutive algebra:

{Ga, Gb} = GcU
c
ab (198)

{H0, Ga} = GbV
b

a (199)

Let Ψ(qA, pA, ηa, ℘a) be an arbitrary fermionic function, to be called

gauge fermion (fermionic gauge-fixing function).

Then the following functional integral is independent of the choice of Ψ:

4It means that
∑

a GaAa = 0 ⇒ Aa = 0.
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ZΨ =

∫
dq dp dη d℘ eiSΨ (200)

SΨ =

∫
dt

(
pAq̇A + ℘aη̇

a − HΨ

)
(201)

HΨ = H0 + ℘aV
a

b ηb + i{Ψ, Ω} , (202)

Ω ≡ Gaη
a + 1

2
(−1)|a|℘aU

a
bcη

cηb . (203)

Ω is called the BRST operator.

(Be careful about the order of the indices of last two η’s.)

¨ The definition above is valid for a mixed system of bosonic and

fermionic constraints Ga.

|a| is 0 if Ga is bosonic and is 1 if Ga is fermionic. Accordingly, the ghosts are

fermionic for the former and bosonic for the latter.
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Remark: For the case at hand with Ga = (Tα, iλ̄α), the involutive algebra

is extended. This extension however is rather trivial since Tα and H0 are assumed

to be functions only of (q, p) and hence iλ̄α is completely inert.

Typical example of Ψ: The often used form of Ψ is

Ψ = ℘aχ
a = i℘αλα + ℘̃αFα (204)

Then by computing {Ψ, Ω}, we get
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HΨ = H0 + iGaχ
a + ∆H = H0 − Tαλα − λ̄αFα + ∆H

(205)

∆H = ℘aV
a

b ηb + i

{
℘a {χa, Gb} ηb + ℘cχ

aU c
abη

b

−℘a℘b

{
χa, U b

cd

}
ηcηd

}
(206)

Note that in general four-ghost interaction is present.

For the usual Yang-Mills theory there are no such terms since the “structure

constants” U b
cd are indeed constant and

{
χa, U b

cd

}
= 0.
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4.3.2 Proof of the BV Theorem

For simplicity, we will deal only with the case where the constraints are all

bosonic and hence ηa are all fermionic.

To prove the BV theorem, we first derive some crucial identities. We will use the

following notations:

G = Gaη
a , V a = V a

b ηb , (207)

Ua
b = Ua

bcη
c , Ua = 1

2
Ua

bcη
bηc (208)

• They are very similar to differential forms, with ηa playing the role of dxµ.

• Note that the b, c indices in Ua are contracted oppositely to the ones in the

definition of Ω. (This leads to the minus sign below in Ω.)

Then we have
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Ω = G − ℘aU
a , (209)

HΨ = H0 + ℘aV
a + i {Ψ, Ω} . (210)

2 Representation of the gauge algebra:

The first set of identities, which follow directly from the definitions above and

the constraint algebra, are

(1) {Ga, G} = GbU
b
a , (211)

(2) {G, G} = 2GaU
a , (212)

(3) {H0, G} = GaV
a . (213)
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2 First-level Jacobi identities:

Now we prove what we call the first-level Jacobi identities:

(Ia) {G, Ua} = Ua
b U b , (214)

(Ib) {G, V a} = V a
b U b − Ua

b V b + {H0, Ua}
(215)

These are called the first-level because they follow from the Jacobi identity for

the Poisson brackets involving the constraints and H0 alone.

Proof of (Ia):

Consider the double Poisson bracket {{G, G} , G}. Since G is fermionic,

the graded Jacobi identity tells us

{{G, G} , G} = {G, {G, G}} − {{G, G} , G}
= {{G, G} , G} − {{G, G} , G} = 0 (216)
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On the other hand, using (2) we get

{{G, G} , G} = 2 {GaU
a, G}

= 2 {Ga, G} Ua + 2Ga {Ua, G}
= 2Ga

(
Ua

b U b + {Ua, G})
. (217)

Since Ga’s are assumed to be algebraically independent, for this to vanish we

must have the identity (Ia). //

Proof of (Ib):

Similarly consider {G, {H0, G}} and compute this in two ways. One way is to

use the Jacobi identity for the Poisson brackets. The other way is to compute it

directly using (3). Equating them we easily get (Ib).

Excercise: Show this explilcitly.
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2 Second-level Jacobi identities:

Next, we will prove the second-level Jacobi identities:

(IIa)
{
Ua, U b

}
= 0 , (218)

(IIb)
{
Ua, V b

}
= 0 . (219)

These are called the second-level because they are relations between the

coefficients of the constraint algebra and are derived using the Poisson

bracket Jacobi identities with U or V in one of the slots and the first-level

Jacobi identities.

Proof of (IIa):

We consider the double Poisson bracket {{G, G} , Ua}. By using the Jacobi
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identity (note Ua is bosonic) we can write this as

{{G, G} , Ua} = {G, {G, Ua}} + {{G, Ua} , G}
= 2 {G, {G, Ua}}
= 2

{
G, Ua

b

}
U b − 2Ua

b

{
G, U b

}
, (220)

where in the last line we used (Ia).

On the other hand, using (2) we get

{{G, G} , Ua} = 2
{
GbU

b, Ua
}

= 2Gb

{
U b, Ua

}
+ 2 {Gb, Ua} U b . (221)

Equating these, we get

(∗)
{
G, Ua

b

}
U b − Ua

b {G, Ub} = Gb

{
U b, Ua

}
+ {Gb, Ua} U b

(222)

To go further, we consider the Jacobi identity

0 = {{G, G} , Ga} − {{G, Ga} , G} + {{Ga, G} , G} (223)
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After some calculations, this Jacobi identity becomes

Gc

(
U c

abU
b + {U c, Ga} − U c

bU b
a +

{
U c

a, G
})

= 0 . (224)

Using the linear independence of Gc, we obtain

U c
abU

b + {U c, Ga} − U c
bU b

a +
{
U c

a, G
}

= 0 . (225)

Now mulitiply this from right by Ua. Then the first term vanishes due to the

antisymmetry of U c
ab in a ↔ b and the result is

{U c, Ga} Ua − U c
bU b

aUa +
{
U c

a, G
}

Ua = 0 . (226)

Substituting this into (∗), we get
{
Ua, U b

}
= 0. //

Proof of (IIb):

It is obtained similarly by considering {{G, G} , V a}.

Excercise: Supply the details.
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2 Proof of 3 fundamental relations:

We are now ready to prove the following three important relations:

(a) {Ω, Ω} = 0 , (227)

(b) {{Ψ, Ω} , Ω} = 0 , (228)

(c) {H0 + ℘aV
a, Ω} = 0 . (229)

Proofs of these relations are straightforward using the formulas already developed.

We only show how (a) is proved as an example.

Proof of (a):

Since Ω is fermionic, this is a non-trivial relation. Recalling Ω = G − ℘aU
a,
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we have

{Ω, Ω} =
{
G − ℘aU

a, G − ℘bU
b
}

= {G, G} −2 {G, ℘aU
a} +

{
℘aU

a, ℘bU
b
}

(230)

(2) gives

{G, G} = 2GaU
a . (231)

Using (Ia), the second term of (230) becomes

−2 {G, ℘aU
a} = −2 {G, ℘a} Ua + 2℘a {G, Ua}

= −2GaU
a + 2℘aU

a
b U b . (232)

As for the third term of (230), we use (IIa) and get
{
℘aU

a, ℘bU
b
}

= {℘aU
a, ℘b} U b − ℘b

{
℘aU

a, U b
}

= ℘a {Ua, ℘b} U b − ℘b

{
℘a, U b

}
Ua

= 2℘a {Ua, ℘b} U b

= −2℘aU
a
b U b . (233)
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Adding all the contributions, we get {Ω, Ω} = 0. //

2 Ψ independence of ZΨ :

Finally we show the Ψ-independence of ZΨ to finish the proof of the BV theo-

rem.

Collectively denote all the variables by ϕ = (q, p, η, ℘) and make a change

of variables corresponding to the BRST transformation

ϕ −→ ϕ̃ = ϕ + {ϕ, Ω} µ (234)

¨ µ is a time-independent fermionic parameter, which nevertheless may depend

functionally on the dynamical variables.

¨ It is easy to show that the action is invariant. First

δ

∫
dt

(
pAq̇A + ℘aη̇

a
)

=

∫
dt

(
δpAq̇A − ṗAδqA

+δ℘aη̇
a − ℘̇aδηa

)
, (235)
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where we used integration by parts. Now insert the change of variables:

δqA =
{
qA, Ω

}
µ =

∂Ω

∂pA

µ , (236)

δpA = {pA, Ω} µ = − ∂Ω

∂qA
µ , (237)

δηa = {ηa, Ω} µ = (∂/∂℘a)Ωµ ( left derivative ) , (238)

δ℘a = {℘a, Ω} µ = (∂Ω/∂ηa)µ ( right derivative ) . (239)

Assuming no contributions from the boundary, we get

δ

∫
dt

(
pAq̇A + ℘aη̇

a

)

=

∫
dt

(
− ∂Ω

∂qA
µq̇A − ṗA

∂Ω

∂pA

µ + (∂Ω/∂ηa)µη̇a − ℘̇a(∂/∂℘a)Ωµ

)

= −
∫

dt

(
q̇A ∂Ω

∂qA
+ ṗA

∂Ω

∂pA

+ (∂Ω/∂ηa)η̇a + ℘̇a(∂/∂℘a)Ω

)
µ

= −
∫

dt
dΩ

dt
µ = 0 (240)
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¨ Next, the Hamiltonian is invariant since δHΨ = {HΨ, Ω} µ = 0.

¨ What remains is the transformation property of the functional measure. The

Jacobian is given by

dϕ̃ = |J |dϕ , (241)

|J | = det
∂ϕ̃j

∂ϕi

= det

(
1 +

∂

∂ϕi

({
ϕj, Ω

}
µ

))
. (242)

Since it will suffice to consider small µ, we can expand

det (1 + A) = eTr ln(1+A) = 1 + Tr A + · · · . (243)
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So we get

|J | = 1 +
∂

∂qA

({
qA, Ω

}
µ

)
+

∂

∂pA

({pA, Ω} µ) + · · ·

= 1 +
∂

∂qA

(
∂Ω

∂pA

µ

)
+

∂

∂pA

(
− ∂Ω

∂qA
µ

)
+ · · ·

= 1 +
∂Ω

∂pA

∂µ

∂qA
− ∂Ω

∂qA

∂µ

∂pA

+ · · ·

= 1 −
(

∂µ

∂qA

∂Ω

∂pA

− ∂µ

∂pA

∂Ω

∂qA

)
+ · · ·

= 1 − {µ, Ω}
' e−{µ,Ω} = ei(i{µ,Ω}) . (244)

Now let us choose

µ =

∫
dt (Ψ′ − Ψ) , (245)

where Ψ′ is infinitesimally different from Ψ. Then, we have

dϕ̃ = dϕei
∫

dt(i{Ψ′,Ω}−i{Ψ,Ω}) . (246)
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Inserting it into the functional integral, we prove

ZΨ′ = ZΨ // (247)
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4.4 Proof of unitarity: Equivalence with canonical functional Integral

Having proved the BV theorem, we now prove the equivalence with the canonical

functional integral, i.e. the functional integral involving only the physical

degrees of freedom.

The proof proceeds in two steps.

2 First step:

The first step is to derive a convenient representation of the physical path

integral.

Let us make a canonical transformation5 of the form

(pi, qi) −→ (p∗
i , q∗i) , i = 1 ∼ n (248)

where the new coordinates (q∗i, p∗
i )i=1∼n are split into the

5Canonical transformation is the one which does not change the standard form of the symplectic struc-
ture. Namely, ω =

∑
i dpi ∧ dqi =

∑
i dp∗

i ∧ dq∗i.
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physical part (q∗u, p∗
u)u=1∼n−m and the unphysical part (q∗α, p∗

α)α=1∼m.

Moreover, we take p∗
α to be the gauge-fixing constraints themselves,

namely

p∗
β = Θβ , β = 1 ∼ m (249)

Then, since canonical transformation does not change the Poisson bracket struc-

ture, we have (recall Tα are the constraints)

det
∂Tα

∂q∗β
= det

{
Tα, p∗

β

}
= det

{
Tα, Θβ

} 6= 0 (250)

By assumption, Θβ are chosen so that this holds at every point in the phase

space.

This then guarantees that using the m constraints Tα(p∗, q∗) = 0 one can

solve for the m variables q∗α in terms of the rest.

For example, consider the constraints near the point where q∗α are very small.
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Then

0 = Tα(p∗, q∗u, q∗β) = Tα(p∗, q∗u, 0) +
∂Tα

∂q∗β
(p∗, q∗u, 0)q∗β (251)

Since the matrix Mαβ = ∂Tα

∂q∗β(p
∗, q∗u, 0) is invertible, we can solve for q∗α as

q∗α = −(M−1)αβTβ(p
∗, q∗u, 0) (252)

Since this can be continued away from the origin of q∗α, we conclude that we

can always solve q∗α in terms of the other variables:

q∗α = q∗α(q∗u, p∗
i ) (253)

Now the physical partition function Z∗ is given by

Z∗ =

∫ ∏
(dp∗

i dq∗i)ei
∫

dt(p∗
i q̇∗i−H0)

∏
δ(p∗

β)

·
∏

δ(qα − q∗α(q∗u, p∗
u)) (254)

constsys-95



Note that because of the presence of the δ-functions
∏

δ(p∗
β), we can drop the

dependence on p∗
β in the expression of q∗α, so that p∗

i → p∗
u.

Finally, we will make use of the following :

• The Liouville measure is invariant. That is
∏

(dp∗
i dq∗i) =

∏
(dpidqi).

• The last δ-function can be rewritten as
∏

δ(q∗α − q∗α(q∗u, p∗
u))

∏
δ(p∗

β)

=
∏

δ(Tα)det

(
∂Tα

∂q∗β

) ∏
δ(p∗

β)

=
∏

δ(Tα)det
{
Tα, Θβ

} ∏
δ(Θβ) (255)

We then finally obtain a useful form of the physical partition function
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Z∗ =

∫ ∏
(dpidqi)

∏
δ(Tα)

∏
δ(Θβ)det

{
Tα, Θβ

}
ei

∫
dt(piq̇

i−H0)

Clearly this form is quite natural.

2 Second Step:

We now want to prove that the above form is reproduced from the BV theorem.

In the BV theorem, let us take the gauge fixing function to be of the form

Θα = λ̇α + Fα(q, p) (256)

It is convenient to divide the ghosts as

ηa = (η̃α, ηα) , ℘a = (℘̃α, ℘α) (257)
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Then the BV action takes the form

SΨ =

∫
dt

(
piq̇

i + λ̄αλ̇α + ℘αη̇α + ℘̃α
˙̃ηα − HΨ

)
(258)

where

HΨ = H0 − Tαλα − λ̄αFα + ∆H (259)

∆H = ℘aV
a

b ηb + i

[
℘a {χa, Gb} ηb + ℘cχ

aU c
abη

b

−℘a℘b

{
χa, U b

cd

}
ηcηd

]
(260)

Recalling the extended definitions of Ga, χa (as in (188) and (189)), V a
b and

U c
ab, we can write each term in ∆H more explicitly:

℘aV
a

b ηb = ℘αV α
β ηβ (261)

℘a {χa, Gb} ηb = −℘αη̃α + ℘̃γ {Fγ, Tβ} ηβ (262)

℘cχ
aU c

abη
b = ℘γiλαUγ

αβηβ (263)

℘a℘b

{
χa, U b

cd

}
ηcηd = ℘̃α℘β

{
Fα, Uβ

γδ

}
ηγηδ (264)
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We now make the following rescaling by a global parameter ε, which will

be taken to zero:

(i) Fα → 1

ε
Fα (265)

(ii) λ̄α → ελ̄α (266)

(iii) ℘̃α → ε℘̃α (267)

• The functional measure is invariant since (ii) and (iii) are bosonic and fermionic

and the factors of ε cancel.

• The purpose of this rescaling is to get rid of the terms λ̄αλ̇α and

℘̃α
˙̃ηα, which scale like ε and vanish as ε → 0. All the other terms in the action

remain unchanged.

• Now since ˙̃ηα has dissappeared, η̃α only appears as −℘αη̃α in (262).

Thus upon integration over η̃α, we get δ(℘α).
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This in turn allows us to integrate out ℘α and the action simplifies drastically to

SΨ =

∫
dt

(
piq̇

i − H0 + Tαλα + λ̄αFα − i℘̃α {Fα, Tβ} ηβ
)

(268)

Now upon integration over ℘̃α and ηβ, we get det
{
Tα, Fβ

}
. Thus

we precisely get the canonical path integral with the gauge-fixing

function Θα replaced by Fα(q, p). q.e.d.

Remark: In the application to non-abelian gauge theory, to retain the rela-

tivistic form, we will not perform the rescaling and simply integrate out ℘α. The

details will be discussed later.

5 Application to non-abelian gauge theory

In this chapter, we apply the methods developed previously to the important case

of non-abelian gauge theory.
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5.1 Dirac’s Method

First, we make use of the Dirac’s method. The basic procedure is the same as

the abelian case already described but the details are more involved.

For simplicity, we take the gauge group G to be compact and normalize the

group metric to be of the form gab = δab. Thus as far as the group indices are

concerned, we need not distinguish upper and lower ones. Where convenient, we

will use the notations

A · B ≡ AaBa , (269)

(A × B)a ≡ fabcA
bBc . (270)

Due to the complete antisymmetry of the structure constant, we have the cyclic

identity

A · (B × C) = B · (C × A) = C · (A × B) . (271)
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2 Conjugate momenta and the basic Poisson bracket:

The Lagrangian is given by

L = −1

4

∫
d3x Fµν · F µν , (272)

Fµν = Aν,µ − Aµ,ν + gAµ × Aν . (273)

We will regard Aa
µ as our fundamental variables. The conjugate momenta are

found by the variation with respect to Ȧa
µ = Aa

µ,0:

δL = −1
2

∫
d3x Fµν · δF µν

= +

∫
d3x F µ0δAµ,0

s ss Πµ
a = F µ0

a . (274)

The equal time (ET) Poisson bracket is defined by{
Aa

µ(x), Πν
b(y)

}
= δa

bδν
µδ(~x − ~y) . (275)

From (274) we get the primary constraints:

Π0
a = F 00

a = 0 . (276)
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2 Canonical Hamiltonian:

The canonical Hamiltonian is given by

Hcan =

∫
d3x Πµ · Aµ,0 − L

=

∫
d3x

(
F i0 · Ai,0 +

1

4
F ij · Fij + 1

2
F i0 · Fi0

)
. (277)

Rewriting the first term as

F i0 · Ai,0 = F i0 · (Ai,0 − A0,i + gA0 × Ai) + F i0 · A0,i − gF i0 · (A0 × Ai)

= −F i0 · Fi0 + F i0 · A0,i − gF i0 · (A0 × Ai) , (278)

we get

Hcan =

∫
d3x

(
1

4
F ij · Fij − 1

2
F i0 · Fi0 + F i0 · A0,i − gF i0 · (A0 × Ai)

)

=

∫
d3x


1

4
F ij · Fij + 1

2
Πi · Πi − A0 ·


∂iΠ

i + gAi × Πi

︸ ︷︷ ︸
DiΠ

i





 .(279)
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In the last line we used integration by parts and the cyclic identity. The expression

in the parenthesis is identified as the covariant derivative:

DiΠ
i ≡ ∂iΠ

i + gAi × Πi . (280)

Consistency between Hcan and the primary constraint Π0
a ∼ 0 immediately

gives the secondary constraint

G ≡ DiΠ
i = 0 (Gauss’ Law constraint) (281)

Note that G does not contain Π0 nor A0.

2 Consistency with Hcan and the algebra of constraints:

We must study the compatibility with Hcan and the algebra of constraints. For

this purpose, let us develop some identities. First from the basic Poisson bracket,
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we have (all the bracktes are at equal time)

{
Aa

0(x), Gb(y)
}

= 0 , (282){
Π0

a(x), Gb(y)
}

= 0 , (283)
{
Aa

i (x), Gb(y)
}

=
δ

δΠi
a(x)

Gb(y) , (284)

{
Πi

a(x), Gb(y)
}

= − δ

δAa
i (x)

Gb(y) . (285)

So to compute them, we simply vary G:

δG = ∂iδΠi + gδAi × Πi + gAi × δΠi . (286)

From this it follows

{
Aa

i (x), Gb(y)
}

= (Dy
i )ab δ(~x − ~y) , (287)

where (Dy
i )ab = δab∂

y
i + gfabcA

c
i(y) , (288){

Πi
a(x), Gb(y)

}
= gfabcΠ

i
cδ(~x − ~y) . (289)
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For a general local function F [Aµ, Πµ] we have

{F (x), Gb(y)} =

∫
d3z

(
δF (x)

δAc
i(z)

{
Ac

i(z), Gb(y)
}

+
δF (x)

δΠi
c(z)

{
Πi

c(z), Gb(y)
}
)

. (290)
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Thus we get

{Ga(x), Gb(y)} =

∫
d3z

(
δGa(x)

δAc
i(z)

δGb(y)

δΠi
c(z)

− δGb(y)

δAc
i(z)

δGa(x)

δΠi
c(z)

)

=

∫
d3z

{(
−gfcapΠ

i
pδ(~x − ~z)

)
· (Dy

i )cb δ(~z − ~y)

− ((a, x) ↔ (b, y))

}

=

∫
d3z

{
−gfcapΠ

i
p(x) (∂y

i δcb + gfcbqA
q
i (y)) δ(~x − ~y)

− ((a, x) ↔ (b, y))

}

= gfabcΠ
i
c(x)∂y

i δ(~x − ~y)

−g2fcapfcbqΠ
i
p(x)Aq

i (x)δ(~x − ~y) − ((a, x) ↔ (b, y)) .

When the terms obtained by (a, x) ↔ (b, y) is explicitly taken into account,
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the first term of O(g) becomes, omitting gfabc,

Πi
c(x)∂y

i δ(~x − ~y) + Πi
c(y)∂x

i δ(~x − ~y)

= ∂y
i

(
Πi

c(y)δ(~x − ~y)
) − Πi

c(y)∂y
i δ(~x − ~y)

= ∂x
i Πi

c(x)δ(~x − ~y) . (291)

As for the O(g2) term, use the Jacobi identity for the structure constant:

fcapfcbq − fcbpfcaq = fabcfcpq . (292)

Therefore, we get

{Ga(x), Gb(x)} = gfabc

(
∂x

i Πi
c(x) − gfcpqΠ

i
p(x)Aq

i (x)
)

δ(~x − ~y)

= gfabcGc(x)δ(~x − ~y) . (293)

Therefore, Ga(x)’s form a closed local gauge algebra. (Note there is no i

classically.)
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Next compute {Hcan, Gb(y)}. It is given by

{Hcan, Gb(y)} = P1 + P2 , (294)

P1 =

∫
d3x

{
1

4
F jk · Fjk(x) + 1

2
Πi · Πi(x), Gb(y)

}
,

(295)

P2 = −
∫

d3x Aa
0 {Ga(x), Gb(y)} . (296)

P2 has already been computed. So we concentrate on P1. From the definition
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of Poisson bracket, we have

P1 =

∫
d3x

∫
d3z

{
δ

δAc
i(z)

(
1

4
F jk · Fjk(x)

)
δGb(y)

δΠi
c(z)

−δGb(y)

δAc
i(z)

δ

δΠi
c(z)

(
1
2
Πi · Πi(x)

)
}

=

∫
d3x

∫
d3z

{
1
2
F jk

a (x)
δF a

jk(x)

δAc
i(z)

(Dy
i )cb δ(~z − ~y)

+gfcbpΠ
i
p(y)δ(~z − ~y)Πi

c(x)δ(~x − ~y)

}
. (297)

The last term vanishes due to the antisymmetry of the structure constant. Per-

forming the functional differentiation, we get

P1 =

∫
d3x

∫
d3z

{
1
2
F ji∂x

j δ(~x − ~z) − 1
2
F ij

c ∂x
j δ(~x − ~z)

+1
2
F ik

z gfacqA
q
kδ(~x − ~z) + 1

2
F ji

a gfapcA
p
jδ(~x − ~z)

}
(Dy

i )cb δ(~z − ~y) .
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The first two terms in the parenthesis are identical. The next two terms are also

the same. The latter times the covariant derivative term, after z-integration,

becomes

g

∫
d3x F ik

a Aq
kfacq (∂y

i δcb + gfcbpA
p
i ) δ(~x − ~y)

= gfabc

∫
d3x ∂y

i

(
F ik

a Ac
k

)
(y)δ(~x − ~y)

−g2

∫
d3x facqfbcpF

ik
a Aq

kA
p
i (y)δ(~x − ~y) . (298)

For the last term, because of antisymmetry of F ik
a , we can antisymmetrize with

respect to q ↔ p and then use the Jacobi identity

−facqfbcp + facpfbcq = fabcfcpq . (299)

Factoring out gfabc, the terms with the common factor F ik
a combine together

to form F c
ik and we get a contribution to P1 of the form

gfabc

∫
d3x

(
∂iF

ik
a Ac

k + 1
2
F ik

a F c
ik

)
δ(~x − ~y) = gfabc∂iF

ik
a Ac

k

(300)
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where the last term on the LHS vanishes due to antisymmetry of fabc.

The remaining contribution to P1 reads

−
∫

d3x ∂jF
ji
c (x) (Dy

i )cb δ(~x − ~y)

= −
∫

d3x ∂jF
ji
b (x)∂y

i δ(~x − ~y)

−
∫

d3x ∂jF
ji
c (x)gfcbpA

p
i δ(~x − ~y)

= −gfabc∂jF
ji
a Ac

i(y) . (301)

This precisely cancels the contribution already computed and we thus get P1 = 0.

So only P2 remains and we finally obtain

{Hcan, Gb(y)} = −gfabcA
a
0Gc(y) ∼ 0 . (302)

This shows that no new constraints are generated.
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2 Gauge-fixing and the Dirac brackets:

Summarizing, we have found the following constraints:

φa(x) ≡ Π0
a(x) = 0 (303)

χa(x) ≡ Ga(x) = (DiΠ
i)a(x) = 0 (304)

We may take the Coulomb gauge as in the abelian case by imposing the additional

constraints:

φ̃a(x) ≡ A0,a(x) = 0 (305)

χ̃a(x) ≡ ∂iA
i
a(x) = 0 (306)

Excercise: Compute the Dirac brackets among the fundamental variables

Ai
a and Πa

j .
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5.2 Application of the BFV formalism

Next we describe the BFV method for the non-abelian gauge theory in some

detail.

5.2.1 Recollection of some notations and results

We will take the gauge-fixing constraint to be of the form

Θα = λ̇α + Fα (307)

As before the following notations will be employed:

qA = (qi, λα) , pA = (pi, λ̄α) , (308)

Ga = (Tα, iλ̄α) , χa = (iλα, Fα) , (309)

ηa = (ηα, η̃α) , ℘a = (℘α, ℘̃α) . (310)
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The gauge-fermion Ψ is taken to be of the form

Ψ = ℘aχ
a (311)

So the gauge-fixing term in the action SΨ is −i {Ψ, Ω} where

{Ψ, Ω} =
{
℘aχ

a, Gbη
b − 1

2
℘bU

b
cdη

cηd
}

= ℘a {χa, Gb} ηb + χaGa

−℘a℘b

{
χa, U b

cd

}
ηcηd + ℘cχ

aU c
abη

b .(312)

constsys-115



5.2.2 Assumptions relevant for gauge theories

We will consider the following case, which is relevant for non-abelian gauge the-

ories.
{
χa, U b

cd

}
= 0 , (313)

{λα, Tβ} = 0 , (314){Fα, λ̄β

}
= 0 , (315)

{Tα, Tβ} = TγUγ
αβ , Rest = 0 (316)

In this case the BRST operator and the gauge-fixing term simplify as follows:

Ω = Tαηα + iλ̄αη̃α − 1
2
℘αUα

βγηβηγ (317)

{Ψ, Ω} = ℘α

{
iλα, iλ̄β

}
η̃β + ℘̃α {Fα, Tβ} ηβ

+i℘γλαUγ
αβηβ + iλαTα + iFαλ̄α ,

= −℘αη̃α + ℘̃α {Fα, Tβ} ηβ

+i℘γλαUγ
αβηβ + iλαTα + iFαλ̄α (318)
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• Note that there are terms in which different types of ghosts, with and without

tilde, are mixed.

2 BRST transformation of the fields:

It is easy to compute the BRST transformations of the fields:

Ω = Tαηα + iλ̄αη̃α − 1
2
℘αUα

βγηβηγ

{℘α, Ω} = Tα + ℘βUβ
αγηγ

{℘̃α, Ω} = iλ̄α ,
{
λ̄, Ω

}
= 0 doublet

{ηα, Ω} = −1
2
Uα

βγηβηγ

{
qi, Ω

}
=

{
qi, Tα

}
ηα − 1

2
℘α

{
qi, Uα

βγ

}
ηβηγ

• similarly for pi

{λα, Ω} = iη̃α , {η̃α, Ω} = 0 doublet
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5.2.3 Form of the Action

With the above expression for the gauge fixing term, the action takes the form

S =

∫
dt

(
piq̇

i + ℘αη̇α + ℘̃α
˙̃ηα

︸ ︷︷ ︸
(∗)

− H0 + λαTα + λ̄αΘα

+i℘αη̃α−i℘̃α {Fα, Tβ} ηβ

︸ ︷︷ ︸
(∗)

+ ℘γλαUγ
αβηβ

)
. (319)

• Note that Fαλ̄α term got combined with λ̄αλ̇α (contained in pAq̇A) to

form precisely λ̄αΘα.

5.2.4 Simplification of Ghost Sector

We now simplify the ghost sector by integrating over ℘α. Then we get the

δ-function

δ(η̇α + iη̃α + Uα
βγλβηγ) . (320)
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Solving for η̃α we get

η̃α = i
(
η̇α + Uα

βγλβηγ
)

≡ i(D0(λ)η)α . (321)

Eliminating η̃α using this expression, the remaining ghost sector ( (∗) parts in

(319) ) becomes

i℘̃α∂t (D0(λ)η)α − i℘̃α {Fα, Tβ} ηβ . (322)

Note that we now have a second order system (i.e. with two derivatives).

For convenience, we will rename the ghost variables:

℘̃α −→ c̄α (323)

ηα −→ cα (324)

Action now takes the form suitable for gauge theories:
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S =

∫
dt

(
piq̇

i − H0 + λαTα + λ̄αΘα

− i ˙̄cα (D0(λ)c)α − ic̄α {Fα, Tβ} cβ

)
(325)

2 A remark on this form of the action:

It is instructive to compute the Hamiltonian from this action.

constsys-120



The conjugate momenta are (using right-derivatives )

Πλα = λ̄α (326)

Πi = pi (327)

Πcα = −i ˙̄cα (328)

Πc̄α = i(D0(λ)c)α = i(ċα + Uα
βγλβcγ) (329)

Then the Hamiltonian is easily computed as

H = H0 − λαT α − λ̄αFα + Πcα

(
1

i
Πc̄α − Uα

βγλβcγ

)

− ic̄α [Fα, Tβ] c
β (330)

If we go back to the original notation, such as cα → ηα etc., we notice that

this is precisely the one given by (319). In this sense, as far as the ghost sector

is concerned, (325) can be considered as the the Lagrangian form.

This of course is not surprising: One can go from the Hamiltonian to the La-

grangian formulation by integratin gover the momentum.
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5.2.5 The case of Feynman gauge

To obtain the ususal Feynman gauge action, we take Fα to be of the form

Fα = (Fa, Fa
0 ) , (331)

Fa = ∂iA
i
a +

α

2
λ̄a , (332)

Fa
0 = mAa

0 , (333)

Here and hereafter, the index “a” represents the gauge index.

Also we introduced an arbitrary mass scale m so that the dimensions of Fa and

Fa
0 agree.

As for Tα and the ghosts, we have

Tα = (Ga, mΠ0
a) , (334)

cα = (ca, ca
0) . (335)

Again, we introduced a mass scale m for dimensional purpose.
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2 Calculation of {Fα, Gβ}:

Let us compute the components of {Fα, Gβ}.

First

{Fa(x), Gb(y)} =
{
∂iA

i
a(x), Gb(y)

}

= −∂x
i

{
Aa

i (x), ∂jΠ
j
b(y) + gfbcdA

c
j(y)Πj

d(y)
}

= −∂x
i ∂i

xδa
bδ(~x − ~y) + gfabcA

i
c∂

x
i δ(~x − ~y) .

(336)

Thus,

c̄a {Fa, Gb} cb = −
∫

d3xc̄a∂i

(
∂iδa

b − gfabcA
i
c

)
cb

= −
∫

d3xc̄a∂i(D
ic)a . (337)

The other non-vanishing component is
{Fa

0 (x), G0
b(y)

}
= m2

{
Aa

0(x), Π0
b(y)

}

= m2δa
bδ(~x − ~y) . (338)
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Therefore,

c̄0
a

{Fa
0 , G0

b

}
cb
0 =

∫
d3xc̄0

am
2ca

0 . (339)

2 Integration over some of the momenta:

Putting altogether, the action becomes,

S =

∫
d4x

{
Πi

aȦ
a
i − H0(Π

i, Ai) + λa(DiΠ
i)a

+Π0
a(Ȧ

a
0 + mλa

0) + λ̄0
a(λ̇

a
0 + mAa

0)

+λ̄a

(
λ̇a + ∂iA

i
a +

α

2
λ̄a

)

+ic̄0
a(∂

2
t − m2)ca

0 + ic̄a

(
∂0(D

0(λ)a
b + ∂i(D

i)a
b

)
cb

}
.

(340)

¨ Integration over Πi
a for the first line gives back the original Lagrangian where
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λa plays the role of Aa
0:

Πi
aȦ

a
i − H0(Π

i, Ai) + λa(DiΠ
i)a =⇒ L0 = −1

4
F µν · Fµν .

(341)

¨ Integration over Π0
a and λ̄0

a gives two δ-functions.

Further integration over Aa
0 reduces this to

δ
(
(∂2

t − m2)λa
0

)
. (342)

¨ Note that (ca
0, c̄0

a) are free and integration produces the determinant det (∂2
t −

m2). This exactly cancels its inverse coming from integration over λa
0.

Through these procedures, we finally obtain the familiar form
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S =

∫
d4x

{
−1

4
F µν · Fµν + Ba

(
∂µAµ

a +
α

2
Ba

)

+ ic̄a∂µ(D
µc)a

}
. (343)

where we have set Ba ≡ λ̄a.

5.2.6 A remark on non-relativistic gauges

When we carefully look at the proof of Ψ independence in the BFV formalism, we

notice that it hinges on the completeness of the ghost and the Lagrange

multiplier system as dynamical variables. This means that we must keep

λ̇α piece in Θα.

constsys-126



However, once Ψ independence is proven, we can go to the non-

relativistic gauges such as the Coulomb gauge by a limiting procedure.

Specifically, we take

Θα =
1

ξ
λ̇α + Fα , (344)

and consider the limit ξ → ∞. In this case, we have (1/ξ)λ̄αλ̇α, and this

leads to the following changes:

{
λα, λ̄β

}
= ξδα

β , (345)

i℘αη̃α =⇒ iξ℘αη̃α , (346)

η̃α =
i

ξ
(D0(λ)η)α . (347)
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So in the limit ξ → ∞, the action becomes

S =

∫
dt

{
piq̇

i − H0 + λαTα + λ̄αFα − ic̄α {Fα, Tβ} cβ

}
.

(348)

The differences from the previous case:

¨ The time derivative terms for the ghosts vanished

¨ The gauge constraint does not contain λ̇α any more.

This scheme can readily be applied to the Coulomb gauge case, for example,

where

Fa = ∂iA
i
a +

α

2
λ̄a . (349)
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5.2.7 BRST transformation for the Lagrangian formulation

The BRST transformations of the fields were given before the integration over

the ghosts ℘α and η̃.

After the integration, the space of fields becomes smaller and we must rederive

the BRST transformation property of the fields again.

We write the Lagrangian density as

L = −1

4
F µν · Fµν + Ba(∂µAµ

a +
α

2
Ba)

−i∂µc̄aD
µca (350)

where Ba ≡ λ̄a = Nakanishi-Lautrup field

2 Conjugate Momenta:

Let us apply the Dirac’s method to this system. The part of the Lagrangian
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relevant for determining the conjugate momenta is

L0 = −1
2
F 0i · F0i + BaȦ

0
a − i∂0c̄a(D

0c)a (351)

From this we read off

φa
1 ≡ Πa

B = 0 primary constraint

φa
2 ≡ Π0

a − Ba = 0 primary constraint

Πi
a = −F 0i

a = F a
0i

Πca = −i ˙̄ca using right derivative

Πc̄a = +i(D0c)a using right derivative

¨ Note that for anti-commuting fields, we must be careful about the differ-

entiation.

The ordering leading to the standard definition of Poisson bracket is pq̇. Thus

we must differentiate with respect to q̇ from right.

The two primary constraints φa
i are actually second class:

{
φa

1(x), φb
2(y)

}
=

{
Πa

B(x), Π0
b(y) − Bb(y)

}
= −δa

b (~x − ~y) 6= 0
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It is easy to check that no secondary constraints arise.

2 Quantization:

Because of these constraints, in A0-B sector, we must compute the Dirac

bracket. It is easy to convince oneself that the only non-vanishing bracket is
{
Ba(x), Ab

0(y)
}

D
=

{
Ba(x), Ab

0(y)
}

= −
∫

d3z

∫
d3w

{
Ba(x), φa

1

}

×(−1)δd
cδ(~z − ~w)

{
φd

2, Ab
0(y)

}

= −δb
aδ(~x − ~y)

Therefore we find the following operator quantitzation rules:[
Aa

i (x), Πj
b(y)

]
ET

= iδa
bδ(~x − ~y)

[
Aa

0(x), Bb(y)
]
ET

= iδa
bδ(~x − ~y)

{ca(x), Πcb}ET = iδa
bδ(~x − ~y)

{c̄a(x), Πc̄b
}ET = iδa

bδ(~x − ~y)
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2 BRST Transformation:

Let us recall the BRST transformation rule for Aa
i in the Hamiltonian formalism.

(To conform to the usual convention, we redefine it with a minus sign.)

δBAa
i ≡ − {

Aa
i (x), Ω

}

= −
∫

d3y
{
Aa

i (x), Gb(y)
}

ET
cb(y)

= −
∫

d3y(δab∂
y
i + gfabcA

c
i(y))δ(~x − vecy)cb(y)

= +∂ic
a(x) + gfabcA

b
i(x)cc(x)

= (Dic)
a = ∂ic

a + g(Ai × c)a

The most important property of the BRST transformation is its nilpotency. So

to find the transformation rule for ca we impose

0 = δBδBAa
i

= ∂iδBca + g(δBAi × c)a + g(Ai × δBc)a

= ∂iδBca + g(∂ic × c)a + g(Ai × δBc)a + g2((Ai × c) × c)a
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This is satisfied if we define

δBca ≡ −1
2
g(c × c)a (352)

Then the RHS becomes

−1
2
g∂i(c × c) + g(∂ic × c) + g2(Ai × c) × c − 1

2
g2(Ai × (c × c))

This vanishes using the Jacobi identity.

¨ Since the above derivation did not depend on the spatial nature of the index

i of Aa
i , covariantization of the rule for the gauge potential works and we thus

define

δBAa
µ ≡ (Dµc)a (353)
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The nilpotency on ca itself can be easily checked using the Jacobi identity:

δBδBc = −1
2
gδB(c × c)

= −1
2
g(δBc × c − c × δBc)

=
1

4
g2((c × c) × c − c × (c × c))

= 1
2
g2(c × c) × c = 0 from Jacobi

Now we come to the transformation on c̄a and Ba. Since they formed a doublet

in the Hamiltonian formalism, we take

δBc̄a = iBa (354)

δBBa = 0 (355)

Then δ2
B = 0 on all fields.
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2 Ghost-Gauge-Fixing Term:

We take the gauge fixing functin to be of the form

Fa = ∂µAµ
a +

α

2
Ba (356)

and write the BRST-invariant ghost-gauge-fixing Lagrangian as

LGh+GF = −iδB(c̄aFa)

= Ba(∂µAµ
a +

α

2
Ba) + ic̄a∂µ(D

µc)a (357)

This is indeed the standard form. Note the i in front of the ghost term. Because

of this, the hermiticity of the ghosts should be assigned as

c†
a = ca , c̄†

a = c̄a (358)

2 Formalism without Ba Field:

In developing perturbation theory, it is often more convenient to integrate out
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the Ba field. Then we get

Ba(∂µAµ
a +

α

2
Ba) −→ − 1

2α
(∂µAµ

a)
2

As Ba transformed non-trivially under BRST, we must modify the transfor-

mation law for c̄a such that new LGh+GF should be BRST invariant. Thus

require

0 = δB

(
− 1

2α
(∂µAµ

a)
2 + ic̄a(D

µc)a

)

= −1

α
(∂µAµ

a)∂µ(D
µc)a + iδBc̄a∂µ∂µ(D

µc)a

(Note δB(Dµc)a = δ2
BAµ

a = 0.) From this we read off

δBc̄a = − i

α
∂µAµ

a (359)

which is the familiar rule.
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