第2章 The Electric Potential(電位)

2.1 Line Integral of the Electric Field (電場の線積分)

$$\boldsymbol{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\boldsymbol{r}}$$
(1)

はもちろん保存力を試験電荷の電気量で割ったものであるから、任意の閉経路Cについての周回線積分はゼロである。

$$\oint_C \boldsymbol{E} \cdot d\boldsymbol{s} = 0 \tag{2}$$

 P_1 から P_2 までの電場の線積分の値は途中の道筋にはよらず始点 P_1 と終点 P_2 のみで決まる。

$$\int_{P_1}^{P_2} \boldsymbol{E} \cdot d\boldsymbol{s} = \frac{q}{4\pi\epsilon_0} (\frac{1}{r_1} - \frac{1}{r_2})$$
(2.1)

となる。ここで r_1 、 r_2 はそれぞれ P_1 と P_2 の原点からの距離である。 重ね合わせの原理により、どんな荷電分布の作る静電場 Eに対しても

$$\int_{P_1}^{P_2} \boldsymbol{E} \cdot d\boldsymbol{s}$$
の値は途中の道筋にはよらず始点 P_1 と終点 P_2 のみで決まる (2.4)

また

$$\oint_{C=\partial S} \boldsymbol{E} \cdot d\boldsymbol{s} = \int_{S} \operatorname{curl} \boldsymbol{E} \cdot d\boldsymbol{a} = 0$$
(3)

である。ここでCに関するベクトル関数の周回線積分はCを縁とする面S(これを記号 $C = \partial S$ で表す)上でのこのベクトル関数の回転 (curl、もしくは rot)の面積分に等しい という Stokesの定理を使った。

静電場については上式を微分形で書き直して

$$\operatorname{curl} \boldsymbol{E} = 0 \tag{4}$$

がなりたつことがわかる。

2.2 Potential Difference and the Potential Function (電位差と電位)

 P_1 から P_2 までの電場の線積分の値は途中の道筋にはよらず始点 P_1 と終点 P_2 のみで決まるスカラー量であるのでこれを $-\phi_{21}$ と定める。つまり

$$\phi_{21} = -\int_{P_1}^{P_2} \boldsymbol{E} \cdot d\boldsymbol{s} \tag{2.6}$$

と書ける。これが P_2 と P_1 の電位差 ϕ_{21} の定義である。 電位差の単位は [V] であり、1[C·V] = 1[J] である。 特に基準点Oを固定して考えた次のスカラー関数 ϕ を電位という。ここで r は任意の点 P の位置ベクトルである。

$$\phi(\boldsymbol{r}) = -\int_{O}^{P} \boldsymbol{E} \cdot d\boldsymbol{s}$$
(5)

基準点 O は 原点である必要はない。 O の 位置 ベクトルを r₀ と書くと

$$\phi(\boldsymbol{r}_0) = 0 \tag{6}$$

が〇の定義である。

原点にある点電荷 q の作る電場内の任意の点 P(r) の電位は

$$\phi(\mathbf{r}) = -\int_{O}^{P} \mathbf{E} \cdot d\mathbf{s} = -\int_{r_{0}}^{r} \frac{1}{4\pi\epsilon_{0}} \frac{q}{r'^{2}} dr'$$
$$= \frac{q}{4\pi\epsilon_{0}} \left(\frac{1}{r} - \frac{1}{r_{0}}\right)$$
(7)

である。 基準点 O を無限遠にとり $r_0 \rightarrow \infty$ とすると

$$\phi(\mathbf{r}) = \phi(r) = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$
(8)

となる。

2.3 & 2.4 Graphient of a Scalar Function, Derivation of the Field from the Potential (電位の勾配と電場)

2点 $\pmb{r}=(x,y,z)$ と $\pmb{r}'=(x',y',z')$ の電位差は

$$\phi(\mathbf{r}') - \phi(\mathbf{r}) = -\int_{\mathbf{r}}^{\mathbf{r}'} \mathbf{E} \cdot d\mathbf{s}$$
(9)

であるが、この2点がごく近傍で $\mathbf{r}' = \mathbf{r} + d\mathbf{r} = (x + dx, y + dy, z + dz)$ の場合、微小電 位差 $d\phi(\mathbf{r}) = \phi(\mathbf{r} + d\mathbf{r}) - \phi(\mathbf{r})$ は

$$d\phi(\mathbf{r}) = -\int_{\mathbf{r}}^{\mathbf{r}+d\mathbf{r}} \mathbf{E} \cdot d\mathbf{s}$$

= -\mathbf{E} \cdot d\mathbf{r} (2.12)

と書けるので

$$d\phi(\mathbf{r}) = -E_x dx - E_y dy - E_z dz \tag{10}$$

が成立する。

よって

$$\begin{cases} E_x(x, y, z) = -\frac{\partial \phi(x, y, z)}{\partial x} \\ E_y(x, y, z) = -\frac{\partial \phi(x, y, z)}{\partial y} \\ E_z(x, y, z) = -\frac{\partial \phi(x, y, z)}{\partial z} \end{cases}$$
(11)

とスカラー関数である電位の偏微分として電場の成分が書き下される。

微分演算子ナブラ (またはデル)▼を

$$\boldsymbol{\nabla} = \hat{\boldsymbol{x}}\frac{\partial}{\partial x} + \hat{\boldsymbol{y}}\frac{\partial}{\partial y} + \hat{\boldsymbol{z}}\frac{\partial}{\partial z}$$
(2.10)

と定めると、電場は電位より

$$\boldsymbol{E}(\boldsymbol{r}) = -\boldsymbol{\nabla}\phi(\boldsymbol{r}) \tag{2.13}$$

と計算できることになる。

 $\nabla \phi \delta \phi$ の勾配といい、これを記号 grad ϕ (gradient、グラディエント)と書く。

2次元で考えると幾何学が直感で理解できよう。

スカラー関数 z = f(x, y)をプロットしたとき FIGURE 2.4(a) のようになったとしよう。 勾配 grad $f(x, y) = \begin{pmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{pmatrix}$ は 2 次元ベクトルであり、x 成分は変数 y を固定したときの zの変化率、y 成分は x を固定したときの z の変化率である。これを x - y 面に射影したの が (b) 図である。ベクトル grad $\phi(x, y)$ は考えている点 (x, y) での曲面の接ベクトルであ る。その大きさは傾きの度合いを示し、向きが最大傾斜方向である。(a) 図の (x_1, y_1) 点で の最大傾斜方向はそれを投影した (b) 図の対応するベクトルの向きを測ると x 方向からお よそ 80° の方向であることがわかる。

等電位面

点 r の電場の方向と直交する向きの dr を考えたとき

$$\boldsymbol{E} \cdot d\boldsymbol{r} = 0 \tag{12}$$

だから、この相隣接する2点は

$$\phi(\mathbf{r} + d\mathbf{r}) = \phi(\mathbf{r}) \tag{13}$$

を満たしているから等しい電位である。3次元空間内で等電位の場所を結べば面が決まり、 これを等電位面という。よって等電位面の接線はつねに電場と直交していることがわか る。

2つの電荷がy軸上に距離aだけ離れて置かれている。原点にある正電荷は2q、(0, a, 0)にある電荷は負で-qの電気量とする。電位がゼロとなるのは無限遠の他に中心が(0, 4a, 0)、半径 $2a/\sqrt{3}$ の等電位球面上である。

The scalar function f(x, y) is represented by the surface in (a). The arrows in (b) represent the vector function, grad f.

4

FIGURE 2.7 は *a* = 3cm の場合の電位を描いた図である。

2.5 Potential of a Charge Distribution (連続荷電分布による電位ポテンシャル)

上図 FIGURE 2.6 のような領域に電荷が密度 ρ で連続的に分布しているとき、点(x', y', z')で考えられる体積 dx'dy'dz'の微小直方体中には微小電気量 $\rho(x', y', z')dx'dy'dz'$ の電荷が存在しているので、電場中の点(x, y, z)には

$$d\phi(x,y,z) = \frac{1}{4\pi\epsilon_0} \frac{\rho(x',y',z')dx'dy'dz'}{\sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}}$$
(14)

なる微小電位で表される微小な電場が作られている。 連続荷電分布が点 (x, y, z) に作る電場に対する電位 $\phi(x, y, z)$ は (14) 式を全ての電荷にわ たって重ね合わせれば得られる。

$$\phi(x,y,z) = \frac{1}{4\pi\epsilon_0} \int_{(abb b a a a a b a)} \frac{\rho(x',y',z')dx'dy'dz'}{\sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}}$$
(2.15)

このスカラー関数 $\phi(x, y, z)$ の勾配 grad $\rho(x, y, z)$ を計算すれば電場 E(x, y, z) が求められる。

ただし、(2.15)は無限遠を電位の基準にとっていることに注意せよ。無限に広がっている 電荷分布に対しては使えない。 直線 (無限に伸びている) 上に線密度λで電荷が一様に分布している電場は第1章12で求めている。結果は直線からrの距離だけ離れている点での電場の大きさは

$$E_r = \frac{\lambda}{2\pi\epsilon_0 r} \tag{15}$$

であり、方向は直線を中心とする円を直線と直交する面上に描いたとき、円の動径方向 \hat{r} と同一方向 ($\lambda > 0$) あるいは逆向き ($\lambda < 0$) である。

電位の基準点を P₁とする。これを無限遠にとることはできない。電位の定義に基づいて 任意の点 P の電位を求めてみる。P は直線から *r* だけ離れているものとする。

$$\phi_{\rm P} = -\int_{\rm P_1}^{\rm P} \boldsymbol{E} \cdot d\boldsymbol{s} = -\int_{r_1}^{r} \frac{\lambda}{2\pi\epsilon_0 r} dr = -\frac{\lambda}{2\pi\epsilon_0} \ln r + \frac{\lambda}{2\pi\epsilon_0} \ln r_1 \tag{2.16}$$

となることがわかる。 当然

$$\boldsymbol{E} = -\boldsymbol{\nabla}\phi = -\hat{\boldsymbol{r}}\frac{d\phi}{dr} = \frac{\lambda}{2\pi\epsilon_0 r}\hat{\boldsymbol{r}}$$
(16)

と検算できる。

補遺 The Potential and Field of a Dipole (電気双極子)

電気双極子の作る電場

図のように正負一対の点電荷 $q \ge -q$ が $s/2 \ge -s/2$ にある。この正負電荷対を電気双極 子とよび、p = qsなるベクトルを電気双極子モーメントベクトルという。電気双極子か ら十分離れた遠方の点 P での電位を求め、そして $s \ge OP$ で定まる平面上での極座標成分 で電場を計算しよう。

r = OPとおくと、点 P での電位 $\phi(r)$ は

$$\phi(\mathbf{r}) = rac{q}{4\pi\epsilon_0} [rac{1}{|\mathbf{r} - \mathbf{s}/2|} - rac{1}{|\mathbf{r} + \mathbf{s}/2|}]$$

で与えられる。

しかし,点Pは十分遠方(r≫s)だから以下の展開公式を使うことが出来る。

$$\frac{1}{|\boldsymbol{r} \mp \boldsymbol{s}/2|} = \frac{1}{\sqrt{r^2 \mp rs\cos\theta + s^2/4}} = \frac{1}{r} (1 \pm \frac{s}{2r}\cos\theta + \cdots)$$

ここで、図のようにsとrのなす角を θ とし。 よって十分遠方でのポテンシャルは

$$\phi(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{qs\cos\theta}{r^2} = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p}\cdot\hat{\mathbf{r}}}{r^2}$$
(10.11)

これが電気双極子モーメントの作る電位である。

電場は $E = -\nabla \phi$ で計算できる。平面極座標表示での成分は $E_r = -\frac{\partial \phi}{\partial r}$ および $E_{\theta} = -\frac{\partial \phi}{r \partial \theta}$ で与えられる (2次元極座標のファイル参照)。 よって

$$\begin{cases} E_r = \frac{p}{4\pi\epsilon_0} \frac{2\cos\theta}{r^3} \\ E_\theta = \frac{p}{4\pi\epsilon_0} \frac{\sin\theta}{r^3} \end{cases}$$

一番初めのファイルでのべた **P**は、誘電体中の単位体積あたりの電気双極子モーメント と定義されている。電束密度 **D**は

$$\boldsymbol{D} = \epsilon_0 \boldsymbol{E} + \boldsymbol{P} = \epsilon \boldsymbol{E} \tag{10.54}$$

という定義を採用する。

誘電体の誘電率 *ϵ* は物質によって異なる値を持つが、真空の誘電率より大きい。

2.6 Uniformly Charged Disk (一様帯電円板の作る電位)

半径 a[m]、面密度 $\sigma[C/m^2]$ の一様な円板が FIGURE 2.8 のようにある。

(1) 円板の中心を通り、円板と直交する y 軸上の点 $P_1(0, y, 0)$ の電位を求めよう。ここで 無限遠を電位の基準とする。

円板上の半径 $s \geq s + ds$ の 2 つの同心円ではさまれた微小領域には微小電荷 $dq = \sigma \cdot 2\pi s ds$ が存在し、 P_1 までの距離 r は $r = \sqrt{y^2 + s^2}$ である。よって dq が P_1 につくる電位 $d\phi$ は

$$d\phi = \frac{1}{4\pi\epsilon_0} \frac{dq}{r} = \frac{\sigma \cdot sds}{2\epsilon_0 \sqrt{y^2 + s^2}} \tag{17}$$

FIGURE 2.8

Finding the potential at a point P₁ on the axis of a uniformly charged disk.

である。円板上の電荷すべての寄与を重ね合わせて、求める電位 *ϕ* は

$$\phi = \int_0^a \frac{\sigma \cdot s ds}{2\epsilon_0 \sqrt{y^2 + s^2}} = \frac{\sigma}{2\epsilon_0} [\sqrt{y^2 + a^2} - |y|]$$
(2.20,2.21)

と書き下せる。この電位と距離 y の関係を図示すると FIGURE 2.9 のようになる。 特別な場所での電位を求めると

$$\phi(0,0,0) = \frac{\sigma a}{2\epsilon_0}$$
 $\phi(0,y,0) = \frac{1}{4\pi\epsilon_0} \frac{\sigma \pi a^2}{y} \quad y \gg a$ に対して
$$(2.23)$$

となっている。予期されるように遠方から円板をみると全電荷が中心にある点電荷の電位 と等しくなっている。

電位から電場を求めると、もちろん y 成分のみが有意で

$$E_y = -\frac{\partial\phi}{\partial y} = \begin{cases} \frac{\sigma}{2\epsilon_0} \left(1 - \frac{y}{\sqrt{y^2 + a^2}}\right) & (y > 0) \\ \frac{\sigma}{2\epsilon_0} \left(1 + \frac{y}{\sqrt{y^2 + a^2}}\right) & (y < 0) \end{cases}$$
(2.26)

となる。

(2) 円板の縁の点 P_2 の電位を求めよう。FIGURE 2.10 のように P_2 を頂点とする直径となす角が θ と角 $\theta + d\theta$ の2つの弦で囲まれる楔形を考える。弦の長さを *R*とする。2つの

弦上で P₂から距離 r および r + dr の半径の弧により切取られた微小四辺形上にある微小 電気量 dq = $\sigma r d\theta dr$ が P₂に作る電位 d ϕ は

$$d\phi = \frac{\sigma r d\theta dr}{4\pi\epsilon_0 r} = \frac{\sigma d\theta dr}{4\pi\epsilon_0} \tag{18}$$

である。

よって円板全体の電荷の重ね合わせの結果による P₂ の電位は 0 $\leq r \leq R = 2a \cos \theta$ およ び $-\pi/2 \leq \theta \leq \pi/2$ の範囲で積分して

$$\phi = \frac{\sigma}{4\pi\epsilon_0} \int_{-\pi/2}^{\pi/2} d\theta \int_0^{2a\cos\theta} dr = \frac{\sigma a}{\pi\epsilon_0}$$
(2.24)

となることがわかる。

$$\phi(\mathbf{P}_2) = \frac{\sigma a}{\pi \epsilon_0} < \phi(0, 0, 0) = \frac{\sigma a}{2\epsilon_0} \tag{19}$$

であるから、円板の縁より中心のほうが電位が高いことがわかる。

2.7 Divergence of a Vector Function (ベクトル関数の発散)

FIGURE 2.12aに示したような空間内に体積 V の領域を考え、その表面を S と書こう。 ベクトル関数 F の面 S 上の面積分 Φ を次のように考える。

$$\Phi = \oint_{S} \boldsymbol{F} \cdot d\boldsymbol{a} \tag{2.29}$$

FIGURE 2.10

Finding the potential at a point P₂ on the rim of a uniformly charged disk.

FIGURE 2.12b のように $V \ge V_1 \ge V_2$ に分けよう。それぞれの領域の表面を $S_1 \ge S_2 \ge U$ 、これらの境界面を $D \ge t$ する。 $\Phi \ge t$ 次のように書き直すことができる。

$$\Phi = \oint_{S_1} \boldsymbol{F} \cdot d\boldsymbol{a}_1 + \oint_{S_2} \boldsymbol{F} \cdot d\boldsymbol{a}_2$$
(2.30)

何故ならD上の面積分は $da_1 \ge da_2$ の法線方向が逆になり面積分の和が打ち消しあうからである。

この分割を何回も繰返し FIGURE 2.12c のように $V \ge V_1, \cdots, V_N$ に分ける。各部分の表面を S_1, \cdots, S_N としても

$$\sum_{i=1}^{N} \oint_{S_i} \boldsymbol{F} \cdot d\boldsymbol{a}_i = \oint_{S} \boldsymbol{F} \cdot d\boldsymbol{a} = \Phi$$
(2.31)

が成立している。この分割を続けて行くと $\oint_{S_i} \mathbf{F} \cdot d\mathbf{a}_i \to 0$ かつ $V_i \to 0$ となる。しかし 比は有限に留まり得る。そこで、空間の各点で次の比の極限値をベクトル関数 \mathbf{F} の発散 (divergence, 記号 div) と定義する。

div
$$\boldsymbol{F} = \lim_{V_i \to 0} \frac{1}{V_i} \oint_{S_i} \boldsymbol{F} \cdot d\boldsymbol{a}_i$$
 (2.34)

この極限の存在と極限が分割の方法に依存しないことを仮定しておく。 無限小体積の領域から出る束の単位体積あたりの値が div**F** である。

2.8 Gauss's Theorem and the Differential Form of Gauss's Law (Gauss の定理と Gauss の法則の微分形)

FIGURE 2.12 (a) A volume V enclosed by a surface S is divided (b) into two pieces enclosed by S_1 and S_2 . No matter how far this is carried, as in (c) and (d), the sum of the surface integrals over all the pieces equals the original surface integral over S, for any vector function F.

Gauss の定理

$$\oint_{S} \boldsymbol{F} \cdot d\boldsymbol{a} = \lim_{N \to \infty} \sum_{i=1}^{N} \oint_{S_{i}} \boldsymbol{F} \cdot d\boldsymbol{a}_{i} = \lim_{N \to \infty} \sum_{i=1}^{N} V_{i} \left[\frac{\oint_{S_{i}} \boldsymbol{F} \cdot d\boldsymbol{a}_{i}}{V_{i}} \right] = \int_{V} \operatorname{div} \boldsymbol{F} dv \qquad (2.35)$$

より

$$\oint_{S=\partial V} \boldsymbol{F} \cdot d\boldsymbol{a} = \int_{V} \operatorname{div} \boldsymbol{F} dv \qquad (2.36)$$

が成立する。これを Gauss の定理という。

Gauss の法則

$$\oint_{S=\partial V} \boldsymbol{E} \cdot d\boldsymbol{a} = \int_{V} \frac{\rho}{\epsilon_0} dv \qquad (2.37)$$

の左辺に数学の Gauss の定理を用いると

$$\oint_{S=\partial V} \boldsymbol{E} \cdot d\boldsymbol{a} = \int_{V} \operatorname{div} \boldsymbol{E} dv \qquad (2.38)$$

となるので、Gaussの法則の積分形より

div
$$\boldsymbol{E}(\boldsymbol{r}) = \frac{\rho(\boldsymbol{r})}{\epsilon_0}$$
 (2.39)

が、空間の各点で成立する。これが Gauss の法則の微分形であり、電荷密度と電場の局所 的関係を述べた電磁気学の基本法則の一つである。

2.9 The Divergence in Cartesian Coordinates (発散のデカルト座標表示)

3次元デカルト座標標示では

$$\boldsymbol{F}(\boldsymbol{r}) = (F_x(x, y, z), F_y(x, y, z), F_z(x, y, z))$$
(20)

と成分でベクトル関数が表示される。

次図 FIGURE 2.13(a) で示すような微小直方体内部領域を考える。一つの頂点 (x, y, z)から、各辺の長さを Δx 、 Δy 、 Δz とする。この微小領域の体積は $V_i = \Delta x \Delta y \Delta z$ である。 直方体の6つの矩形面の外向き単位法線ベクトルとベクトル関数の内積に各々の微小矩形 面積をかけて和をとったものが (14)の Gaussの定理の左辺の面積分の値をあたえる。矩 形は微小であるからベクトル関数の値を各面の中心で定めてよい。

このようにして考えると、例えば図 (b) のような上下面の積分への寄与は上面の外向き単位法線は *ż*、下面の外向き単位法線ベクトルは –*ż* であるので

$$\int_{\pm\Xi} \mathbf{F} \cdot d\mathbf{a} = F_z(x + \frac{\Delta x}{2}, y + \frac{\Delta y}{2}, z + \Delta z) \Delta x \Delta y - F_z(x + \frac{\Delta x}{2}, y + \frac{\Delta y}{2}, z) \Delta x \Delta y \quad (21)$$

である。右辺はテーラー展開により

右辺 =
$$\frac{\partial F_z(x, y, z)}{\partial z} \Delta x \Delta y \Delta z = \frac{\partial F_z(x, y, z)}{\partial z} V_i$$
 (22)

と近似できる。

上下面以外の側面についても同様に考えると

$$\oint_{\substack{\hat{\Phi} \notin \mathbb{B} \\ m}} \boldsymbol{F} \cdot d\boldsymbol{a} = F_z \left[\frac{\partial F_x(x, y, z)}{\partial x} + \frac{\partial F_y(x, y, z)}{\partial y} + \frac{\partial F_z(x, y, z)}{\partial z} \right] V_i$$
(23)

となる。

(12)の発散の定義により、デカルト座標表示での div F が

div
$$\mathbf{F} = \lim_{V_i \to 0} \frac{1}{V_i} \oint_{S_i} \mathbf{F} \cdot d\mathbf{a}_i = \frac{\partial F_x(x, y, z)}{\partial x} + \frac{\partial F_y(x, y, z)}{\partial y} + \frac{\partial F_z(x, y, z)}{\partial z}$$
 (24)

と書き下せることがわかった。この結果は微小領域の形状によらないことも示せるので、 一般に

div
$$\mathbf{F} = \frac{\partial F_x(x, y, z)}{\partial x} + \frac{\partial F_y(x, y, z)}{\partial y} + \frac{\partial F_z(x, y, z)}{\partial z} = \mathbf{\nabla} \cdot \mathbf{F}$$
 (2.44)

がなりたつ。右辺の最後の表式には、既に定義したナブラ記号

$$\boldsymbol{\nabla} = \hat{\boldsymbol{x}}\frac{\partial}{\partial x} + \hat{\boldsymbol{y}}\frac{\partial}{\partial y} + \hat{\boldsymbol{z}}\frac{\partial}{\partial z}$$
(2.10,2.52)

を用いた。

無限に長い半径aの円柱が一様電荷密度 ρ で帯電しているときの例題を考える。既に Gauss の法則の積分形で見た通り、円柱の内外の電場は軸と直交する半径方向成分しかなく、その大きさは

$$E = \begin{cases} \frac{\rho a^2}{2\epsilon_0 r} & (r > a に対して)\\ \frac{\rho r}{2\epsilon_0} & (r < a に対して) \end{cases}$$
(2.45)

であった。

FIGURE 2.17に円柱の断面 (円柱の延びている方向を z軸方向としている)を示したが、 原点からの距離が r であるから $r = \sqrt{x^2 + y^2}$ である。電場の x成分、y成分はそれぞれ

$$E_{x} = \frac{x}{r}E = \begin{cases} \frac{\rho a^{2}x}{2\epsilon_{0}(x^{2}+y^{2})} & (r > a \wr \forall \cup \intercal) \\ \frac{\rho x}{2\epsilon_{0}} & (r < a \wr \forall \cup \intercal) \\ \frac{\rho a^{2}y}{2\epsilon_{0}(x^{2}+y^{2})} & (r > a \wr \forall \cup \intercal) \\ \frac{\rho y}{2\epsilon_{0}} & (r < a \wr \forall \cup \intercal) \\ r < a \wr \forall \cup \intercal \end{pmatrix}$$

$$E_{z} = 0$$

$$(2.46)$$

直接 div E を計算すれば、円柱の外では

$$\boldsymbol{\nabla} \cdot \boldsymbol{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} = 0 \tag{2.47}$$

となっていて、円柱の中では

$$\boldsymbol{\nabla} \cdot \boldsymbol{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} = \frac{\rho}{\epsilon_0}$$
(2.48)

と Gauss の法則の微分形を確かに満していることがわかる。

静電場のエネルギー

静電場のエネルギーは

$$U = \int_{\underline{\hat{x}}} \frac{\epsilon_0}{2} \mathbf{E}^2 dv \tag{25}$$

であたえられることをみたが、静電場は電位の勾配で表されるので代入し、部分積分す る。無限遠まで電荷分布がのびていなければ

$$U = -\int_{\underline{\hat{x}}\underline{\hat{x}}\underline{\hat{n}}} \frac{\epsilon_0}{2} \boldsymbol{E} \cdot \boldsymbol{\nabla} \phi dv = \int_{\underline{\hat{x}}\underline{\hat{x}}\underline{\hat{n}}} \frac{\epsilon_0}{2} \phi \boldsymbol{\nabla} \boldsymbol{E} dv$$
(26)

を得る。 ここで、Gaussの法則の微分形を用いると、静電場のエネルギーは

$$U = \frac{1}{2} \int_{abb} \rho \phi dv \tag{27}$$

と電荷密度関数と電位の積の積分であらわせる。 1/2という係数は、N個の点電荷の系の静電エネルギーが

$$U = \frac{1}{2} \sum_{i=1}^{N} q_i \sum_{j=1}^{N} \frac{q_j}{|\mathbf{r}_i - \mathbf{r}_j|} = \frac{1}{2} \sum_{i=1}^{N} q_i \phi_i$$
(28)

と i 番目の電荷とその電荷の存在する点での電位

$$\phi_i = \sum_{j=1}^N \frac{q_j}{|\boldsymbol{r}_i - \boldsymbol{r}_j|} \tag{29}$$

の積の総和の1/2倍であったことに対応するものである。

2.10 The Laplacian (ラプラス演算子)

静電場は電位の勾配にマイナス符号をつけたものであった。

$$\boldsymbol{E} = -\text{grad}\,\phi = -(\hat{\boldsymbol{x}}\frac{\partial\phi}{\partial x} + \hat{\boldsymbol{y}}\frac{\partial\phi}{\partial y} + \hat{\boldsymbol{z}}\frac{\partial\phi}{\partial z})$$
(2.49)

Gauss の法則より

$$\operatorname{div}\boldsymbol{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}$$
(2.50)

であったので、

div
$$\boldsymbol{E}$$
 = -div grad ϕ = $-(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2})$ (2.51)

となる。

$$\boldsymbol{\nabla}^2 = \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
(2.53)

なる演算子をラプラス演算子あるいは Laplacian(ラプラシアン) という。 この演算子を用いると、電位ポテンシャルと電荷密度の間には

$$\boldsymbol{\nabla}^2 \boldsymbol{\phi} = -\frac{\rho}{\epsilon_0} \tag{2.54}$$

なる関係が成立している。これを Poisson(ポアソン) 方程式と呼ぶ。 デカルト座標表示では

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = -\frac{\rho}{\epsilon_0}$$
(2.55)

となる。

2.5 連続荷電分布による電位ポテンシャルで点電荷の作るクーロン電場の電位の重ね合わせの解 (5th.pdf の (21) 式) の微分形に相当するのが Poisson 方程式である。

2.11 Laplace's Equation (ラプラス方程式)

電荷密度の存在しない領域で電位ポテンシャルは方程式

$$\boldsymbol{\nabla}^2 \boldsymbol{\phi} = 0 \tag{2.56}$$

を満たす。この方程式を Laplace(ラプラス) 方程式といい、Laplace 方程式をみたす解を 調和関数という。

調和関数に関して、次の重要な定理が存在する。 "Laplace 方程式をみたす解 $\phi(x, y, z)$ の任意の球面上での平均値は球の中心での ϕ の値に 等しい。"

この定理を FIGURE 2.18 のような点電荷 q と内部に電荷を含まない球面 S(中心を O、半径 a とする)上に一様に電気量 q' が分布している簡単な系の例題で確かめてみよう。

まず球面*S*上に電荷 q' が分布して作っている電場内に無限遠から球の中心 O から R (> a) まで運んでくるのに必要な仕事 W は O に q' があるときに作る電場を考えれば良いので

$$W = \frac{1}{4\pi\epsilon_0} \frac{q'}{R} q \tag{30}$$

である。

次に点電荷 q の作る電場で帯電球面 S を中心 O が q から R の距離まで無限遠から持って

来るのに必要な仕事 W' を求めてみよう。 球面上の電荷面密度 σ は

$$\sigma = \frac{q'}{4\pi a^2} \tag{31}$$

である。

qまでの距離がrの球面上の微小面積daには σda の微小電荷がある。qが作る電場のこの 微小領域での電位を $\phi_q(r)$ と書くと

$$W' = \oint_{S} \phi_q(r)\sigma da = \frac{q'}{4\pi a^2} \oint_{S} \phi_q(r) da$$
(32)

となる。この配置は W を考えたときと同じ 配置であるから W' = W になっていなければ ならない。よって

$$\frac{1}{4\pi a^2} \oint_S \phi_q(r) da = \frac{1}{4\pi\epsilon_0} \frac{q}{R}$$
(33)

である。

上式の左辺はqの作るS上での電位 ϕ_q の平均値であり、右辺はqの作る電位 ϕ_q の中心O での値である。したがってqの作る電位 ϕ_q は調和関数の定理をみたしている。もちろん ϕ_q は点電荷qの場所を除いて Laplace 方程式の解である。一般の電荷分布に関しても重ね 合わせの原理からこの定理が成立することがわかる。

この定理によると、なにもない空間では静電場によって点電荷を安定なつりあいには保つ ことができないこよが示せる。何故なら、正の点電荷が安定なつりあいの位置にあれば、 周囲の電位はその位置の電位より高いはずであるが、このような電位では球面上の平均値 が球の中心の値に等しくなることはないからである。不安定なつりあいは実現するとして も、安定なつりあいは実現しない。時間的に変化する電場を用いて電荷を安定に保つこと は可能である。 2.13 The Curl of a Vector Function (ベクトル関数の回転)

FIGURE 2.21(a) で示したように、3次元空間内の閉曲線 C上でのベクトル関数 F(x, y, z)の周回線積分 Γ (これを循環という)を考える。

$$\Gamma = \oint_C \boldsymbol{F} \cdot d\boldsymbol{s} \tag{2.58}$$

ここで ds は C 上の各点での無限小接ベクトルである。

(b) 図のように *C* を分割し、間に新しい経路 *B* を設けて閉経路 $C_1 \ge C_2$ にわける。 $C_1 \ge O$ 循環 $\Gamma_1 \ge C_2 \ge O$ 循環 Γ_2 の和が Γ に等しい。何故なら C_1 、 C_2 共に *B* 上での線積分を 含むが無限小接ベクトルの向きが互いに逆向きになるので $\Gamma_1 + \Gamma_2$ では相殺されるからで ある。

$$\oint_{C} \boldsymbol{F} \cdot d\boldsymbol{s} = \oint_{C_1} \boldsymbol{F} \cdot d\boldsymbol{s}_1 + \oint_{C_2} \boldsymbol{F} \cdot d\boldsymbol{s}_2$$
(34)

が成立している。 分割を繰返し、 Γ を (c) 図のように N 個の閉曲線 $C_1, \dots, C_i, \dots, C_N$ 上の循環の和で書く ことができる。

$$\oint_{C} \boldsymbol{F} \cdot d\boldsymbol{s} = \sum_{i=1}^{N} \oint_{C_{i}} \boldsymbol{F} \cdot d\boldsymbol{s}$$
(2.59)

この分割を進めていけば無限小の長さの閉経路上の微小循環の無限個の和として、 $C \perp o$ 循環が定まることになる。各閉経路の取り囲む面積も無限に小さくなるので、発散をベク トル関数の微小閉曲面上の面積分と微小閉曲面の取り囲む微小体積の比で定義したとき のように微小閉曲線上の循環と微小閉曲線の取り囲む面積の比の極限値をベクトル関数 の回転の定義にしたい。しかし、微小閉曲線 C_i により取り囲まれる微小面は有向量であ る。面積の大きさを a_i 、微小面の単位法線を \hat{n} とする。この向きは C_i に対して右ネジが 進む方向とする (FIGURE 2.22)。

Right-hand-screw relation between the surface normal and the direction in which the circulation line integral is taken.

この極限により単位ベクトル \hat{n} との内積が有限になる新たなベクトル関数が定義される。 これをFの回転とよび、記号 curl Fと書く。

$$(\operatorname{curl} \boldsymbol{F}) \cdot \hat{\boldsymbol{n}} = \lim_{a_i \to 0} \frac{\Gamma_i}{a_i} = \lim_{a_i \to 0} \frac{\oint_{C_i} \boldsymbol{F} \cdot d\boldsymbol{s}_i}{a_i}$$
(2.61)

で curl **F** が定義される。curl を rot と書く教科書も多い。 単位法線ベクトル î を î とすれば curl **F** の x 成分、ŷ とすれば curl **F** の y 成分、î とす れば curl **F** の z 成分が得られる。

2.14 Stokes's Theorem (Stokesの定理)

閉曲線*C*に関する循環 Γ が小さい循環 Γ_i の和であたえられることをみた。

$$\Gamma = \oint_C \mathbf{F} \cdot d\mathbf{s} = \sum_{i=1}^N \Gamma_i = \sum_{i=1}^N a_i \frac{\Gamma_i}{a_i}$$
(2.62)

右辺最後の表式は単に a_i を使った恒等変形である。 $N \rightarrow \infty$ では各 $a_i \rightarrow 0$ となるが、i番目の小循環を考える小胞の単位法線 \hat{n}_i を用いると

$$\frac{\Gamma_i}{a_i} \to (\operatorname{curl} \boldsymbol{F}) \cdot \hat{\boldsymbol{n}}_i \tag{35}$$

であるから、 $N \to \infty$ の極限で

$$\sum_{i=1}^{N} a_i \frac{\Gamma_i}{a_i} = \sum_{i=1}^{N} a_i (\operatorname{curl} \boldsymbol{F}) \cdot \hat{\boldsymbol{n}}_i \to \int_S d\boldsymbol{a} \cdot \operatorname{curl} \boldsymbol{F}$$
(2.63)

なる面積分を得る。よって次の定理が成立する。

$$\oint_{C=\partial S} \boldsymbol{F} \cdot d\boldsymbol{s} = \int_{S} d\boldsymbol{a} \cdot \operatorname{curl} \boldsymbol{F}$$
(2.64)

数学ではこれを Stokes の定理とよんでいる。

2.15 The Curl in Cartesian Coordinates (デカルト座標表示でのベクトル関数の回転)

curl **F**の定義において $\hat{\mathbf{n}} = \hat{\mathbf{z}}$ とし、 $(x, y, z) \rightarrow (x + \Delta x, y, z) \rightarrow (x + \Delta x, y + \Delta y) \rightarrow (x, y + \Delta y, z) \rightarrow (x, y, z)$ なる矩形上の経路 $C = \Box$ (FIGURE 2.24, 2.25)を考えると (curl \mathbf{F})_zの デカルト座標表示が得られる。 例えば、 $(x, y, z) \rightarrow (x + \Delta x, y, z)$ 上では $d\mathbf{s} = (dx, 0, 0)$ だから

$$\int \boldsymbol{F} \cdot d\boldsymbol{s} = \int_{x}^{x + \Delta x} F_{x}(x, y, z) dx \approx F_{x}(x, y, z) \Delta x$$
(36)

である。

この辺の対辺 $(x + \Delta x, y + \Delta y) \rightarrow (x, y + \Delta y, z)$ では

$$\int \boldsymbol{F} \cdot d\boldsymbol{s} = \int_{x+\Delta x}^{x} F_x(x, y+\Delta y, z) dx \approx -F_x(x, y+\Delta y, z) \Delta x$$
(37)

である。 よって、この2つの右辺の和はy座標に関しての Taylor 展開を用いて

$$F_x(x,y,z)\Delta x - F_x(x,y+\Delta y,z)\Delta x \approx -\frac{\partial F_x(x,y,z)}{\partial y}\Delta y\Delta x$$
(38)

と表される。 $(x+\Delta x,y,z) \to (x+\Delta x,y+\Delta y)$ と $(x,y+\Delta y,z) \to (x,y,z)$ の対辺でも同様にして、線積分への寄与が

$$F_y(x + \Delta x, y, z)\Delta y - F_y(x, y, z)\Delta y \approx -\frac{\partial F_y(x, y, z)}{\partial x}\Delta x\Delta y$$
(39)

と表されることがわかるので、この微小矩形回路上での微小循環は

$$\oint_{\Box} \mathbf{F} \cdot d\mathbf{s} = \Delta x \Delta y \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) \tag{40}$$

となる。 $\Delta x \Delta y$ は法線が z 軸方向の面の面積だから、定義に基づいて curl F ベクトルの z 成分が

$$(\operatorname{curl} \boldsymbol{F})_z = \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}$$
(41)

となる。

同様に x、y 方向の単位ベクトルを n と同定すると

$$\operatorname{curl} \boldsymbol{F} = \hat{\boldsymbol{x}} \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) + \hat{\boldsymbol{y}} \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial y} \right) + \hat{\boldsymbol{x}} \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) = \begin{vmatrix} \hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$
(42)

とデカルト座標表示できる。

デカルト座標表示をみれば、curlは nabla 記号を用いて

$$\operatorname{curl} \boldsymbol{F} = \boldsymbol{\nabla} \times \boldsymbol{F} \tag{43}$$

と書くことができるのも理解できよう。

2. 16 The Physical Meaning of the Curl (curl の物理的意味)

curl と rot は同じ意味である。Maxwell は rot を使った。ドイツ系の文献では rot を使っている。

浴槽から流れ出す水の流速の分布関数は循環がゼロではない。しかし、静電場のような保 存力の場では力の任意の周回線積分はゼロである。 静電場では

$$\operatorname{curl} \boldsymbol{E} = 0 \tag{2.75}$$

がどこでも成立する。

逆に、どこでも curl E = 0 であれば、E はスカラー関数の勾配 (電位の勾配のマイナス 倍) であたえられる静電場である。

ベクトル関数に関する Gauss の定理と Stokes の定理、スカラー関数の勾配を FIGURE 2.31 にまとめた。

