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1 Introduction

♦ Lattice formulations are conventional formulations enable to access to

nonperturbative aspects of quantum field theory.

♦ We wish to extend such lattice study to supersymmetric (gauge) theories.

Difficulty for realization of SUSY on lattice

In general, (SUSY)2 ∼ (infinitesimal translation)

↑
Not a symmetry of lattice

♦ However, a part of supercharges can be preserved on the lattice.

e.g.) Nilpotent supercharges (up to internal symmetry) do not induce

translations.

(⇔ scalar supercharges from topological twist)
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Example: 2D N = (2, 2) SYM or SQCD case:

Lattice formulation preserving the supercharge: Q = − 1√
2
(QL + Q̄R)

(BRST charge in A-model twist)

[Two R-symmetries] [on lattice]

U(1)A O.K.

U(1)V broken

Another possibility preserving the supercharge: Q′ = − 1√
2
(Q̄L + Q̄R)

(BRST charge in B-model twist)

[Two R-symmetries] [on lattice]

U(1)A broken

U(1)V O.K.

• U(1)V ⇐ chiral symmetry of 4D N = 1

• U(1)A ⇐ rotational symmetry on reduced 2D plane
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Because we consider the theory on flat space-time, topological twists are just

renaming the field variables of the continuum theory.

⇒ The continuum theory does not change by the twists.

However, the lattice theory becomes different depending on which of Q and Q′

is exactly preserved.
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2 Continuum 2D N = (2, 2) SYM

After taking the Wess-Zumino gauge,

♦ Euclidean Action

S
(E)
(2,2) =

1

g2

∫
d2x tr


H2 − 2iHF12 + DµφDµφ̄ +

1

4
[φ, φ̄]2

+4λ̄RDzλR + 4λ̄LDz̄λL + 2λ̄R[φ̄, λL] + 2λ̄L[φ, λR]

 ,

♦ Q-SUSY

QAµ = ψµ, Qψµ = iDµφ,

Qφ = 0,

Qφ̄ = η, Qη = [φ, φ̄],

Qχ = H, QH = [φ, χ],

Q2 = (infinitesimal gauge transformation with the parameter φ)
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with the gaugino fields renamed as U(1)A

ψ1 ≡ 1√
2
(λL + λ̄R), ψ2 ≡ i√

2
(λL − λ̄R), 1

χ ≡ 1√
2
(λR − λ̄L), η ≡ −i

√
2(λR + λ̄L). −1

⇒The action can be expressed as the Q-exact form: [Witten]

S
(E)
(2,2) = Q

1

g2
2d

∫
d2x tr


χ(−2iF12 + H) +

1

4
η[φ, φ̄] − iψµDµφ̄


 .
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Figure 1: Link variables U—(x) and plaquette field U12(x). U21(x) = U12(x)`1.

3 Lattice formulation of 2D N = (2, 2) SYM

Lattice gauge fields are on links: Aµ(x) ⇒ Uµ(x) = eiaAµ(x)

All the other fields are on sites.

Lattice fields are dimensionless.

φ, φ̄ = O(a), ψµ, χ, η = O(a3/2), H = O(a2),

Q = O(a1/2).
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♦ Q-SUSY on the lattice

QUµ(x) = iψµ(x)Uµ(x),

Qψµ(x) = iψµ(x)ψµ(x) + ia∇µφ(x),

Qφ(x) = 0,

Qφ̄(x) = η(x), Qη(x) = [φ(x), φ̄(x)],

Qχ(x) = H(x), QH(x) = [φ(x), χ(x)],

where a∇µφ(x) ≡ Uµ(x)φ(x + µ̂)Uµ(x)−1 − φ(x).

⇒ Q2 = (infinitesimal gauge tr. with the parameter φ(x))

(Nilpotent up to gauge transformation on the lattice)

• Actually, starting with QUµ(x) = iψµ(x)Uµ(x), we get Qψµ(x) as

Q2Uµ(x) = i(Qψµ(x))Uµ(x) − iψµ(x) (QUµ(x))

⇓
φ(x)Uµ(x) − Uµ(x)φ(x + µ̂)
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♦ Q-invariant Lattice Action: Q(gauge invariant terms) [F.S.]

For admissible gauge fields (||1 − U12(x)|| < ε for ∀x),

S
(lat)
(2,2) = Q

1

g2
0

∑

x
tr


χ(x)

{−îΦ(x) + H(x)
}

+
1

4
η(x)[φ(x), φ̄(x)] − i

∑

µ
ψµ(x)a∇µφ̄(x)


,

Otherwises, S
(lat)
SYM = +∞. (i.e. The Boltzmann weight is zero.)

Here, (for G = U(N))

̂Φ(x) =
−i(U12(x) − U21(x))

1 − 1
ε2||1 − U12(x)||2 ∼ 2F12
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Note

If we used a naive −i(U12(x) − U21(x)) instead of ̂Φ,

gauge kinetic terms would be

∼ −tr (U12(x) − U21(x))2 = tr (2 − U12(x)2 − U21(x)2)

⇒ The configurations

U12(x) =




±1
. . .

±1




(up to gauge tr.)

for ∀x would give the classical minima of the action.

Huge degeneracy! (] of minima) ∼ O

2N(] of plaquettes)




Because the continuum theory is derived from weak field expansion around

Uµ(x) = 1, we should single out the vacuum U12(x) = 1.

⇒ The use of ̂Φ does the job with keeping Q-SUSY.
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c.f.) The Wilson lattice gauge action: tr (2 − U12(x) − U21(x))

⇒ The unique minimum U12(x) = 1.

Note:

• ε is some positive number independent of the lattice spacing a.

⇒ F12 is almost unconstrained near the continuum limit.

• O.K. for G = U(N), SU(N) .
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♦ Restoration of full SUSY

Of course, the lattice action reduces to the continuum classical action in the

continuum limit a → 0 with g2d ≡ g0/a fixed.

How about quantum mechanically?

Possible relevant/marginal operators radiatively generated:

• tr φ, tr φ̄, tr H : forbidden by U(1)A symmetry and reflection

symmetry of the lattice action

• tr φφ̄ : forbidden by Q-SUSY.

There does not appear dangerous operator which prevents from restoring full

SUSY. ⇒ No fine tuning needed

This is a perturbative argument.

Nonperturbative check for the restoration has been done by numerical study in

case of G = SU(2). [Kanamori-Suzuki]
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4 Continuum 2D N = (2, 2) SQCD

2D N = (2, 2) SQCD ⇐ dimensional reduction from 4D N = 1 SQCD

Field contents:

• V = (Aµ, φ, φ̄; λ; H) ⇐ 4D N = 1 vector superfield

• Φ+I = (φ+I; ψ+IR, ψ+IL; F+I) ⇐ 4D N = 1 chiral superfield

(fundamental repre., flavors: I = 1, · · · , n+)

• Φ−I = (φ−I; ψ−IR, ψ−IL; F−I) ⇐ 4D N = 1 chiral superfield

(anti-fundamental repre., flavors: I = 1, · · · , n−)

The continuum Lagrangian :

L = LSYM +



n+∑

I=1
Φ†

+Ie
V Φ+I +

n−∑

I=1
Φ−Ie

−V Φ†
−I




∣∣∣∣∣∣∣θθθ̄θ̄

+ W (Φ+, Φ−)|θθ + W (Φ†
+, Φ†

−)
∣∣∣∣∣θ̄θ̄

,
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♦ Lattice formulation of 2D N = (2, 2) SQCD

Ginsparg-Wilson formulation can be extended to realize both of Q-SUSY and

chiral flavor symmetry. → O.K. for general n± [Kikukawa-F.S.]

• O.K. for general superpotential with preserving holomorphic structure

• Application to gauged linear sigma models

♦ Q′ invariant lattice formulation (B-model twist): [Kadoh-F.S.-Suzuki]

seems more natural to preserve the chiral flavor symmetry.

• In the case n− = 0 (only fund.) or n+ = 0 (only anti-fund.),

the constructed action can be shown to have the single minimum

U12(x) = 1 without using the admissibility conditions.

• G = U(N)

Superpotentials:

• W is Q′-exact. ⇒ W is Q′-invariant on the lattice.

• W is not Q′- exact. ⇒ difficult to realize Q′-invariant W on the lattice.
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5 2D N = (4, 4) SYM

2D N = (4, 4) SYM ⇐ (dim. red.) = 4D N = 2 SYM

Bosons : Aµ, B, C, φ, φ̄

Fermions : ψ±µ, χ±, η±

There are two supercharges Q± nilpotent in the sense of

Q2
+ = (infinitesimal gauge transformation with parameter φ),

Q2
− = (infinitesimal gauge transformation with parameter −φ̄),

{Q+, Q−} = (infinitesimal gauge transformation with parameter C).

Under SU(2)R subgroup of the R-symmetry group SU(4),

(Q+, Q−), (ψ+, ψ−), (χ+, χ−), (η+, −η−): doublets,

(φ, C, φ̄): triplet.
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The classical action can be expressed as the Q± exact form: [Dijkgraaf-Moore],

[Blau-Thompson],..

S
(E)
(4,4) = Q+Q−F(4,4),

F(4,4) ≡ 1

g2
2d

∫
d2x tr


−2iBF01 − ψ+µψ−µ − χ+χ− − 1

4
η+η−


 .

F(4,4) : gauge and SU(2)R invariant.

The lattice action with Q±-SUSY can be constructed essentially by

2F12 → ̂Φ(x) other than trivial changes. [F. S.]

Perturbatively, it is shown that full SUSY is restored in the continuum limit with

no fine-tuning.
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6 2D lattice for 4D SYM

♦ Mass-deformed 2D N = (4, 4) SYM

[Hanada-Matsuura-F.S.] (in progress)

We can consider a mass-deformation analogous to the BMN matrix model to

the 2D N = (4, 4) action with keeping the full 8 SUSY as

S
(E)
(4,4)M =

2

g2
2d

∫
d2x tr



1

2
F 2

12 +
1

2
(DµXI)2 +

1

2
ΨT (D1 + γ2D2) Ψ

+
i

2
ΨTγI[X

I, Ψ] − 1

4
[XI, XJ ]2

+
1

2



M

3




2

(Xa)2 − i
M

6
ΨTγ23Ψ + i

M

3
X3F12 + i

M

3
εabcX

aXbXc




with I, J = 3, 4, 5, 6 and a, b, c = 4, 5, 6. c.f. [Das-Michelson-Shapere]

Then, Q±-SUSY is deformed so that they are nilpotent up to gauge and

SU(2)R rotations :

Q2
+ = (gauge transf. with φ)+

M

3
J++,
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Q2
− = (gauge transf. with −φ̄)−M

3
J−−,

{Q+, Q−} = (gauge transf. with C)−M

3
J0

with J0, J±± : generators of SU(2)R.

The action is expressed as

S
(E)
(4,4)M =


Q+Q− − M

3


F(4,4),

where F(4,4) is identical with the undeformed case.

Note that S
(E)
(4,4)M is not precisely Q+Q−-exact but Q± invariant.

For instance,

Q+S
(E)
(4,4)M = Q2

+Q−F(4,4) − M

3
Q+F(4,4)

=
M

3
J++Q−F(4,4) − M

3
Q+F(4,4) = 0.
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♦ Q± invariant lattice action for the deformed theory can be obtained again by

2F12 → ̂Φ(x).

Perturbatively, full SUSY is restored in the continuum limit without fine-tuning.

• The theory has no flat directions, but discrete minima corresponding to Fuzzy

spheres

[Xa, Xb] = i
M

3
εabcX

c.

Fuzzy sphere configurations are supersymmetric.

⇒ Expanding around one of the configurations

Xa =
M

3
La

(k) ⊗ 11n, (La
(k) : k-dim. irre. rep. of SU(2))

we obtain 4D N = 2 SYM on R2× Fuzzy S2.

• gauge group of the 4d theory : G4d = U(n) (n finite!)

• “lattice spacing” of Fuzzy S2 : b = 1/(Mk),
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NC parameter θ ∼ 1/(Mk2)

b → 0 (k → ∞) limit is smooth? UV-IR mixing?

♦ We are considering the similar thing for mass-deformed 2d N = (8, 8)

SYM. [Hanada-Matsuura-F.S.] (in progress)

• The continuum 2d theory would be obtained from the lattice theory with no

fine-tuning.

• 4D N = 4 SYM on R2× Fuzzy S2 is obtained.

Now, b → 0 (k → ∞) limit is expected to be smooth.

⇒ Continuum 4d N = 4 SYM with G4d = U(n) on R2 × S2 could be

obtained with no fine-tuning. (1/M : radius of S2)

• Finally, take M → 0 limit to get the theory on R4.

⇒ If this scenario works, the 2D lattice would give the nonperturbative

formulation of 4d N = 4 SYM with G4d = U(n).
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7 Summary and Discussion

♦ Lattice formulations of 2D N = (2, 2) SYM (and SQCD) have been

discussed.

• Q-invariant formulation (A-model twist)

– G = U(N), SU(N)

– general n± by employing the Ginsparg-Wilson operator

Exact chiral flavor symmetry on the lattice

– general superpotentials

• Q′-invariant formulation (B-model twist)

simpler than the A-model twist case (Admissibility cond. is not necessary)

– G = U(N)

– (n+, n−) = (n+, 0) or (0, n−)
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♦ Lattice fomulation of 2D N = (4, 4) SYM and its mass-deformed version

has been discussed.

• Hybrid formulation of 2D lattice and Fuzzy S2 seems to be an interesting

possibility to construct 4D N = 4 SYM.

– Interesting also from the viewpoint of gauge/string duality.
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