Yang-Mills as a holographic dual of string theory in flat space

Takuya Okuda Joint work with João Penedones

Plan

Motivation and goal

- Previous works, formulation of the problem, subtleties and obstacles
- Our results
- Discussion
- Conclusions

What do I mean by "the holographic dual of string theory in flat space"?

AdS/CFT :

N=4 super Yang-Mills Type IIB strings on AdS₅×S⁵

- Yang-Mills as a non-perturbative definition of string theory in AdS.
- What about the textbook string theory defined in flat Minkowski space?

Goal: flat space limit of AdS/CFT

Can we take the flat space limit?

 This was discussed by Polchinski (1999) and Susskind (1999) soon after AdS/CFT was discovered.

I will review other works.

Other holographic formulations of string/M-theory in flat space

- M(atrix) theory (BFSS)
- Type IIB matrix model (IKKT)
- Matrix string theory

Common feature: Infinite N, N is a regulator Also true for the flat space limit of AdS/CFT

Plan

Motivation and goal

- Previous works, formulation of the problem, subtleties and obstacles
- Our results
- Discussion
- Conclusions

Polchinski (1999) and Susskind (1999)

Formulation of the problem

Formulation of the problem: the flat space limit of AdS/CFT

The 4-point function is given by the bulk-to-boundary propagators and the amputated Green's function.

 $\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_4(x_4) \rangle$ $= \int \prod_{i=1}^{r} [dy_i] K_{B\partial}(x_i, y_i) G_{amp}(y_1, y_2, y_3, y_4)$

Polchinski (1999) and Susskind (1999)

- Formulation of the problem
- Obtained a relation between the 4-point function and a scattering amplitude in flat space
- Potential relevance of OPE singularity
- Schematic
- Could have gone further

- Giddings, Balasubramanian and Lawrence (1999), Giddings (1999)
 - Potential obstacles (periodicity of geodesics, growth of amplitudes near boundary)
 - Need projection to avoid growing modes
- Jevicki and Nastase (2005)
 - pp-wave and flat space limit of AdS

Gary, Giddings and Penedones (2009)

- Construction of well-localized wave packets.
- Explicit relation between singularity in a CFT correlator and scattering amplitudes for effective field theory in flat space.
- Relation reproduces scattering amplitudes in effective field theory from known correlators
- Gary and Giddings (2009)
 - Cautionary remarks about power-law tails of the wave packets.

Plan

Motivation and goal

- Previous works, formulation of the problem, subtleties and obstacles
 - Our results
 - Discussion
 - Conclusions

Derivation of the relation (Penedones and T.O.)

Choose sources J_i(x_i) with a compact support to produce wave packets

$$\Psi_i(y) = \int [dx] J_i(x) K_{B\partial}(x, y)$$

In the flat limit the wave packets are well localized in AdS so that the interaction only occurs in a small flat region.

Derivation of the relation (Penedones and T.O.)

$$\int \prod_{i=1}^{4} [dx_i] J_i(x_i) \langle \mathcal{O}_1(x_1) \dots \mathcal{O}_4(x_4) \rangle$$

=
$$\int \prod_{i=1}^{4} [dy_i] \Psi_i(y_i) G_{amp}(y_1, y_2, y_3, y_4)$$

In the limit and in the flat region, $\Psi_i(y_i)$ essentially becomes a plane wave, and G_{amp} gives the scattering amplitude by LSZ.

Derivation of the relation (Penedones and T.O.)

To account for all the momentum conserving delta functions on the gravity side, the four point function has to show a singular behavior at $\det x_{ij} = 0$. (similar but different from OPE)

A scaling variable $\zeta^2 \sim \sqrt{g_{YM}^2 N} \frac{\det x_{ij}}{x_{12}^2 x_{34}^2 x_{13}^2 x_{24}^2}$

Scaled correlator for dilaton scattering

$$\mathcal{F}(\zeta) \overset{\text{define}}{\sim} \lim_{\substack{N \to \infty \\ \zeta^2: \text{fixed}}} (g_{YM}^2 N)^{-7/4} \langle \mathcal{O}(x_1) \dots \mathcal{O}(x_4) \rangle$$

Relation between the correlator and the scattering amplitude (Penedones and T.O.)

The rescaled corelator $\mathcal{F}(\zeta)$ and the string scattering amplitude $\mathcal{T}(\omega)$ are related, roughly, by the Laplace transform

$$iT(\omega) \sim \int_{-i\infty}^{i\infty} d\zeta e^{\zeta l_s \omega} \mathcal{F}(\zeta)$$
$$\mathcal{F}(\zeta) \sim \int_0^{\infty} d\omega e^{-\zeta l_s \omega} iT(\omega)$$

Precise formulas

$$\frac{\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_3)\rangle}{\langle \mathcal{O}(x_1)\mathcal{O}(x_3)\rangle \langle \mathcal{O}(x_2)\mathcal{O}(x_4)\rangle} = \mathcal{A}(g_{\rm YM}, N, \sigma, \rho^2)$$

$$\sigma^2 = \frac{x_{13}^2 x_{24}^2}{x_{12}^2 x_{34}^2}, \quad \sinh^2 \rho = \frac{\det x_{ij}^2}{4x_{13}^2 x_{24}^2 x_{12}^2 x_{34}^2}$$

$$\mathcal{F}(g_{\rm YM}^2, \sigma, \zeta) = \frac{1}{\sigma^8} \lim_{N \to \infty} \frac{\mathcal{A}\left(g_{\rm YM}, N, \sigma, -\frac{(1-\sigma)\zeta^2}{\sigma g_{\rm YM}\sqrt{N}}\right)}{(g_{\rm YM}^2 N)^{7/4}}$$

$$i\mathcal{T}\left(g_s, l_s, s, t/s\right) = \frac{2^{17} 3^2 \pi^3 \sqrt{stu}}{l_s^5 s^7}$$

$$\times \int_{-i\infty}^{i\infty} \frac{d\zeta}{2\pi i} \zeta \mathcal{F}(4\pi g_s, -t/s, \zeta) e^{\zeta l_s \sqrt{s}}$$

Plan

Motivation and goal

- Previous works, formulation of the problem, subtleties and obstacles
- Our results
 - Discussion
 - Conclusions

Issues in the derivation

- Periodicity of geodesics in AdS might prohibit defining asymptotic states.
- Aren't the propagators modified by quantum corrections?
- String theory is defined on-shell. Does the LSZ reduction apply?

Resolved issues in the derivation

 Periodicity of geodesics in AdS might prohibit defining asymptotic states.

Use localized sources and wave packets.

Aren't the propagators modified by quantum corrections?

Non-renormalization of 3-point functions.

String theory is defined on-shell. Does the LSZ reduction apply?

Local field theory only used outside the interaction region.

Remaining issues in the derivation

- Are the wave packets sufficiently localized? Gary and Giddings (2009) found power-law tails.
- AdS and the Minkowski space have different asymptotic infinities. Aren't the theories defined on them completely unrelated?

Translation of physical properties and questions

- Most interesting: gauge theory to string theory (e.g., study black hole physics).
 Difficult because of strong coupling.
- Easy: string theory to gauge theory.
 e.g., exponential fall-off at high energy
 → high-order behavior in Taylor expansion of *F*(*ζ*)

Conclusions

- Many but not all subtle issues in taking the flat space limit can be resolved. Made progress assuming that the remaining issues can be overcome.
- Identified a sub-sector of N=4 SYM dual to IIB strings in flat space.
- Scaled correlators and scattering amplitudes are related by the Laplace transform.

Happy Birthday!

