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Main theme: Symmetry

... arguably the most successful principle of physics!

• Space-time symmetries

– Rotations and translations in Newtonian physics

– Special relativity and the Poincaré group

– General relativity and general covariance

• Internal symmetries

– Isospin SU(2) symmetry: mneutron = 1.00135mproton

– Flavor symmetry SU(3) and the strong interactions

– Standard model and SU(3)c × SU(2)w × U(1)Y

• The two fundamental theories of modern physics,
General Relativity and the Standard Model of Par-
ticle Physics, are based on and largely determined
by symmetry principles!



Symmetry and Unification

Like a ferromagnet: symmetry is broken more and
more with decreasing temperature as universe expands.



But where do we go from here?

Idea: symmetry enhancement as a guiding principle!

• Grand Unification:

SU(3)c × SU(2)w × U(1)Y ⊂ SU(5) ⊂ SO(10) ⊂ E6 ⊂ . . .?

→ quark lepton unification, proton decay, ...

• ‘Fusion’ of space-time and internal symmetries?

• Supersymmetry: relates Bosons ↔ Fermions, or:

Forces (vector bosons) ↔ Matter (quarks & leptons)?

• Duality symmetries, e.g. electromagnetic duality

E + iB → eiα(E + iB) , q + ig → eiα(q + ig)

• Quantum symmetry and quantum space-time?



Habitat of Quantum Gravity?

• Cosmological evolution as ‘geodesic motion’ in the
moduli space of 3-geometries [Wheeler, DeWitt,...]

M ≡ G(3) =
{spatial metrics gij(x)}

{spatial diffeomorphisms}

• Formal canonical quantization leads to WDW equa-
tion (“Schrödinger equation of quantum gravity”)

– Functional differential equation: mathematically ill-defined

– Unsolved conceptual and interpretational problems

• Unification of space-time, matter and gravitation:
configuration space M for quantum gravity should
consistently incorporate matter degrees of freedom

• Can we understand and ‘simplify’ M by means of
embedding into a group theoretical coset G/K(G)?



Four-loop finiteness of N = 8 supergravity
[Bern,Carrasco,Dixon,Johansson,Roiban, PRL103,081301(2009); Z.Bern: talk at Strings’09]

• Use unitarity based arguments to reduce all ampli-
tudes to integrals over products of tree amplitudes.

• All particles are on-shell → only 3-point vertices.

• Instead of O(1020) Feynman diagrams need only cal-
culate O(50) ‘Mondrian-like’ diagrams!

Thus, N = 8 supergravity could be UV finite to all
orders → WHY? → Unknown Symmetry?



Exceptional Symmetries and Supergravity

• N = 8 supergravity in D = 4 has more symmetry
than meets the eye: E7(7)! [Cremmer,Julia,1979]

(Recall: G2, F4, E6, E7, E8 are the five exceptional Lie groups.)

• Duality symmetries for maximal supergravities in
D &= 4: En(n) for maximal supergravity in D = 11 − n.

• Idem for other non-compact real forms, e.g.

E7(−25) for ‘magic’ N = 2 in D = 4

E7(−5) for N = 12 in D = 3

E8(−24) for ‘magic’ N = 4 in D = 3

• E9(9) ≡ E(1)
8 for maximal supergravity in D = 2.

• ... suggests E10(10) for D = 1 ....

• ... or even E11(11) for D = 0?? [→ P. West]



BKL and Spacelike Singularities (I)

Hypothesis: for T → 0 spatial points decouple and the
system is effectively described by a continuous super-
position of one-dimensional systems → effective di-
mensional reduction to D = 1! [Belinski,Khalatnikov,Lifshitz (1972)]



BKL and Spacelike Singularities (II)

Near cosmological singularity parametrize metric as

ds2 = −N 2dt2 + gmndxmdxn , gmn = em
aen a

Iwasawa decomposition of spatial zehnbein em
a ≡ em

a(t,x)

em
a = e−β

a
θm

a , det θm
a = 1

From classical BKL analysis we know that:
[Belinski,Khalatnikov,Lifshitz (1972); Misner (1969); Chitre (1972); DHN (2003)]

• Dynamics near singularity is dominated by logarith-
mic scale factors βa → ∞ and leading ‘wall forms’
which result from ‘integrating out’ non-diagonal met-
ric and matter degrees of freedom.

• ⇒ off-diagonal metric components θma and matter
degrees of freedom ‘freeze’ as T → 0.



Walls and Roots

• ‘Integrating out’ remaining degrees off freedom leads
an effective description in terms of cosmological bil-
liards taking place in β-space of scale factors.

• The Lie algebra connection : identify space of log-
arithmic scale factors {βa} with the Cartan subal-
gebra of some indefinite Kac Moody algebra.

• Walls of billiard table are defined by spacelike nor-
mal vectors which can be identified with real roots
of some indefinite Kac Moody algebra.

• For maximal supergravity this Kac Moody algebra
is the maximally extended hyperbolic algebra E10.



Cosmobilliards in ‘β-spacetime’

M

M

The ‘Kasner billiard ball’ moves in the ‘billiard cham-
ber’ on lightlike straight lines (‘free Kasner flights’),
bouncing off the walls of the chamber (‘Kasner bounces’).

Chaotic oscillations of metric if chamber is contained
within forward lightcone, otherwise ‘AVD’ behavior.



E10: The Basic Picture

Conjecture: for 0 < T < TP space-time ‘de-emerges’,
and space-time based (quantum) field theory is re-
placed by (quantized) E10/K(E10) σ-model [Cf. DN, 0705.2643]



Why E10?

• E10 occupies a uniquely distinguished place among
all infinite-dimensional Lie algebras (much like E8

among the finite-dimensional Lie algebras)

• In BKL approximation, classical dynamics of SUGRA11

near the initial singularity is well approximated by
cosmological billiards in Weyl chamber of E10

• E10 ‘knows all’ about maximal supersymmetry:

– Different ‘slicings’ of the E10 algebra yield correct supermultiplets
for maximal supergravities (SUGRA11, mIIA, IIB, . . .)

– E10/K(E10) σ-model dynamics at low levels matches with respective
equations of motion when truncated to first order spatial gradients

• E10 may provide Lie-algebraic mechanism for the
‘de-emergence’ of space and (upon quantization)
time near the singularity (that is, for 0 < T < TP)



What is E10?

(No one knows, really....)

E10 is the ‘group’ associated with the Kac-Moody Lie
algebra g ≡ e10 defined via the Dynkin diagram [e.g. Kac]

1 2 3 4 5 6 7 8 9

0

! ! ! ! ! ! ! ! !

!

!

Defined by generators {ei, fi, hi} and relations via Car-
tan matrix Aij (‘Chevalley-Serre presentation’)

[hi, hj] = 0, [ei, fj] = δijhi,

[hi, ej] = Aijej, [hi, fj] = −Aijfj,

(ad ei)
1−Aijej = 0 (ad fi)

1−Aijfj = 0.

e10 is the free Lie algebra generated by {ei, fi, hi} modulo
these relations → infinite dimensional as Aij is indefi-
nite → Lie algebra gets infinitely complicated !



Infinite Complexity from simple recursion

A Mandelbrot set generated from zn+1 = fc(zn).



Some Key Properties

• Root space decomposition α ∈ Q(E10) = II1,9

gα = {x ∈ g : [h, x] = α(h)x for h ∈ h}

where g ≡ e10 and h ≡ Cartan subalgebra of E10.
Real roots (α2 = 2) and imaginary roots (α2 ≤ 0).

• Triangular decomposition → Computability

g = n− ⊕ h ⊕ n+ with n± :=
⊕

α≷0 gα

• Invariant bilinear form → Action Principle

〈hi|hj〉 = Aij , 〈ei|fj〉 = δij , 〈[x, y]|z〉 = 〈x|[y, z]〉

• Even Weyl group W+(E10) = PSL2(O) (where O ≡
integral octonions = ‘octavians’) [FKN, math.RT/0805.3018]

[Pure gravity: W+(AE3) = PSL2(Z) = modular group]



Vistas into E10...

[from: Teake Nutma (University of Groningen)]



E10 Versatility

! ! ! ! ! ! ! ! !

!

!

"

sl(10) ⊆ e10

D = 11 SUGRA

! ! ! ! ! ! ! ! !

!

"

!

so(9, 9) ⊆ e10

mIIA D = 10 SUGRA

! ! ! ! ! ! ! ! !

!

" "

sl(9) ⊕ sl(2) ⊆ e10

IIB D = 10 SUGRA

! ! ! ! ! ! ! !

!

"

sl(3) ⊕ e7 ⊆ e10

N = 8, D = 4 SUGRA



Cosmological quantum billiards

• Mini-superspace quantization for diagonal degrees
of freedom ≡ quantization of E10/K(E10) model re-
stricted to Cartan subalgebra ⇒ WDW equation

HΨ|h = Gab∂a∂bΨ ⇒

{

−
∂

∂ρ

(

ρd−1 ∂

∂ρ

)

+ ρd−30H

}

Ψ[ρ, ω] = 0

with variables projecting onto unit hyperboloid H

βa ≡ ρωa with ωaGabω
b = −1 ⇒ ρ2 = −βaGabβ

b

and 0H is Laplace-Beltrami operator on H.

• Reduced equation studied for pure gravity in D = 4
[Misner(1972);Graham,Szepfalusy(1990);Forte(2008)]

• Factorize Ψ[ρ, ω] = R(ρ)F (ω) with −0HF (ω) = EF (ω) ⇒

R±(ρ) = ρ−
d−2
2 e±i

√

E−(d−2
2 )2

log ρ



• For E10 use ‘upper half plane’ coordinates ω ≡ ω(z)

z := u + iv : u ∈ O ≡ R
8 , v ∈ R>0 (iu = ūi)

• W (E10) acts by modular transformations:

w−1(z) = 1/z̄ , w0(z) = −θz̄θ + θ , wj(z) = −εjz̄εj
with εj = simple roots of E8 ⊂ unit octavians ⇒

• Billiard domain ≡ fundamental domain for W (E10)

(Ψ1|Ψ2) = i

∫

F
dΣaΨ∗

1

↔
∂a Ψ2 , F = H/W (E10)

• ⇒ a new theory of automorphic forms(?): solutions
to WDW equation are odd Maass wave forms for
arithmetic group W+(E10) = PSL2(O).

• E ≥ 1
4(d−2)2 implies Ψ → 0 for ρ → ∞, and wave

function cannot be continued beyond singularity
→ Singularity avoidance in quantum cosmology?
[Kleinschmidt, Koehn, HN: arXiv:0907.3048[gr-qc]; Kleinschmidt, HN: arXiv:0912.0854[gr-qc]]



Beyond the billiard approximation

• Expected form of wave functional in BKL limit:

Ψ ∼
∏

x

Ψx(ρx, zx) , x ∈ Σ

→ inhomogeneities and spatial decoupling.

• Main task: replace this formal expression by a wave
function depending on infinite tower of E10 d.o.f.’s.

• Conversion of ‘small tension’ expansion in spatial
gradients into (algebraic) expansion in heights of
E10 roots would effectively implement de-emergence
of space and time near the initial singularity.

• E10 Cartan–Killing form → unique Hamiltonian

• Conserved E10 Noether charges supply infinitely many
observables à la Dirac (whereas none are known in
standard canonical gravity).



Outlook

• Symmetry by no means exhausted as a guiding prin-
ciple of physics but many open questions remain.

• E10 is a uniquely distinguished Lie algebra, but to
find a manageable representation for it remains an
outstanding mathematical challenge (after 40 years).

• Near cosmological singularity (as ρ → ∞) life be-
comes ‘infinitely complicated’ as we expect all E10

degrees of freedom to get excited.

• Main new features of quantized E10/K(E10) model:

– Wave function generically vanishes at singularity

– Wave function is generically complex and oscillating ...

– ... and cannot be continued beyond singularity

• An element of non-computability for T → 0?




