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I
What I would like to show:

“Large-N reduction works for group manifolds in its original form.”

Matrix model

¢__ Y

4K2 Tr([Xa’Xb] _i achc j ”

f...: structure constant of a group G

is equivalent to YM theory on G, if we expand X . around a special
minimum of S, and take the large-N limit.
Minimum of S: [)A( a,)A( ,,] =1 fabcf( .= X , are rep. matrices of G.
We consider a special representation of the form L =T ®]1,,

where 7" is the rep. matrix for the regular representation of
G,add  iskxkunit matrix.

T."¢’ is first truncated to n dims, and take the limit 7,k — .

NB Different from fuzzy manifolds.

D-dimensional space-time emerges from D matrices.



Introduction

Large N reduction

large-N gauge theory is equivalent to lower dimensional models obtained by
dimensional reduction.

Conceptual importance: Emergence of space-time from matrix degrees of freedom.
Practical use: Non-perturbative formulation of large N gauge theory.
In particular, super symmetric Yang Mills theory.

So far it has been investigated mainly on flat space-time.

Generalization to S® was done.
They have considered N=4 SYM on R x S3.

General curved spacetime?
Description of curved space-times by matrices.
Fluctuation around them is still not clear.

Here we show that the large N reduction works on group manifolds and coset spaces.
Usually large N reduction is shown in momentum space.

We reconsider it in coordinate space to make the generalization easier.

We consider a kind of bi-local field theory.
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Bi-local field theory
interpretation of reduced model




phi*3 matrix field theory on R®

s = [dlaTr (%(8u¢(x))2 + m29(2)? + %mﬁ(wﬁ)

¢(x) :Nx N hermitian matrix

Propagator
1 [
(d(x1)ijp(x2) K1) = D(T1 — 72)0;0 1 ) < T
, >
7 k

i J
Vertex n \\/ k
m l

Large N limit

N — 00, k— 0 with k°N = X fixed




phi*3 matrix field on R® (cont’d)

Planar

1
L1 @xQ — ENQ)\/ddxlddch D(zcl — £U2)3

Non-planar

N\ 1
) Ty = g)\/ddazlddwg D(zq1 — z5)3
Suppressed



Large N reduction

_ [ 1 2,1 o, y2 1 3
5= [z Tr (S(0ub@)? + Sm26(2)? + Sre(2)*)

reduced model

Construct a matrix model by the following procedure:

¢(z) = &, Oy — [iPy, 1, /ddm —

- Sr = vTr (%[z’ﬁu, $]° + %m2$2 4 %n$3>

More concretely,

é :hermitian operator acting on the function space on R*



Large N reduction (cont’d)

IR and UV cut off

{ Assume the volume of space-time is V.

Function space on space-time ===) N dimensional vector space.

<

Space-time is divided into N cells of volume v =V /N .
d

2
Cut off momentum is given by v = (Tﬂ) .

OJiiiEivaa e Momentum representation. /2

AD2

>
—N\/2 N2 D1

(p(li),pg))

Uniform Y
distribution

& : N x N hermitian matrix.




Reduced model as a bi-local field theory
Coordinate

representation.

1. .. - 1 ~ 1 -
Sr = oTr (S1iPu $12 + Sm23? + )

(z|d|z’) = ¢(x,x) Bi-local field.
Puey = -2y, (alPu= > (al
o0

(9:(:’“

—I—'U/ddxddaz'ddx” %nrgb(x,a:')qﬁ(a:’,x”)qﬁ(w”,x)

Change of variables
o

o) N__ O
XH = gt guzmu_x'u —> (8xu—|—8xm>q§(x,a:)—m

2
Sr = v / d3zde’ (—%qﬁ(w’, x) (8% + ) o(z,z") + %m%(w’, z)d(z, a:’))

¢(z,z")




Perturbative expansion in cordinate space

(p(z1,21) (25, 22)) = %D(xl — 22)8%((z1 — 7}) — (z2 — 25))

End points propagate like particles.

) ) / I1
Relative coordinate €1 — 1 conserves.
CL']_ — ZBQ — a:’l — £L"2
) /
End points are transported parallel. L]

L2



Free energy at the two-loop level

Planar

“ T1 T2

1
ENQ)\/ddazldde D(z1 — )3
1

2 X
KJ—(Sd(O)E/ddmlddw2 D(w]_ — $2)3 N2V
. L

d 1 “N2
V=Nv 0)== v




Free energy at the two-loop level (cont’d)

L1 L2

1

g)\/ddxlddxz D(z1 — z5)3
1

N2V

6v

5%(0) /dd:clddxlldda:Qddx’Q'D(xl —x2)D(z} — 23)D(x1 — %) 1 # X
X
N2y

Suppressed by factor 1 /V* K
compared with planar diagrams. 6v

(O)V2/dda¢1ddw2 D(a:l — $2)3




Correspondence between reduced
model and original theory

Limit in reduced model

N —o00, k—>0, v—0 with V = Nv — o0, A = k2N fixed

» Reduced model reproduces original field theory.

—

Free energy:
F I
N2V N2y

Correlation functions:

ﬁ(Tr(fﬁ(azl)Qﬁ(xz) - dlzg))) = ﬁ(Tr(q@(ggl)&(@) o B(zg)))r




Large N reduction on Torus T¢
—

Introduce another index in order to suppress non-planar diagrams.

—

—~

¢ Matrix valued bi-local operator:

N ¢(£U,£U’) — ¢(m7$,)a,3 (ale — 17 7k)

Function space on the torus ==) n-dim vector space.

Dimension of ¢ is N=nk.

Large-N limit of the reduced model:

n—o0o, k— oo, x— 0, with A = k2N = k2nk fixed

:> Non-planar diagrams are suppressed by 1 /k* , and the reduced
model reproduces the original field theory in the planar limit.




Large N reduction for gauge theory

Fuy = 8pAy — 0y Ap +i[Au, A)] mmmm) i[P, + A, P, + A,)] = i[X,, X))

Ay — Ay

Reduced model of YM theory

v ~ . : : :
S ,,/0 = — _2Tr [X 15 XV] 2 Dimensional reduction of
45 YM theory to zero
‘dimension.

P, is interpreted as a background of X, .

This background is unstable because of massless modes.

) Quenching, Twisting,... Not consistent with SUSY.

Bhanot-Heller-Neuberger (82) Gross-Kitazawa (’82)



Large N reduction on group
manifolds




Notes on group manifolds

G: compact and connected Lie group. (Later we will assume G is semi-simple.)

ta (a=1,---,dim G) : Generators of G. [ta, tp] = if,5 te

l9) (g € G) : Coordinate basis of the function space on G.

Left and right translations

Left translation: U'L(h)lg) = |hg), <9|(7L(h) — <h_19|
Right translation: UR(h)|g> = |9h_1>7 <9|[7R(h) = (ghl|

heaG

For a function on G %(g) = (g|¥)
(OL(R)Y)(9) =¥ (h™tg), (Or(h)¥)(g9) = ¥ (gh)



Notes on group manifolds (cont’d)

Killing vectors
1:6.2:/0, —_—

Right invariant Killing vector La: e = Uy, (eid“) infinitesimal left translation

Left Rq: eiKe = Op(efta)
right

Comm. Rel. [Ea,f/b] — ifabcf/c, [Ka, Kb] = ifabcf(c, [Lq, R'b] =0
In terms of differential operators,

f/a|9> — —£a|9>7 <9|Ea — Ea<9|7
Kalg) = —Kalg), (9|Ka = Ka(g|

. = 1 0 _ 1 0
Group version of Pylz) = —;@Lm), (z| Py, = =——(=x].



Notes on group manifolds (cont’d)

1 i a 0
{nght inv. 1- form e @ d=dit'— = ie"L, = is°K,

Left 5@ oxH

: 1 1
Maurer-Cartan equation de® — 5 frele? nef =0, ds®— > fre2sP A s¢ =0

Right and left invariant metric

— a _a _—_ _.a_a
huy = e ey = S,Sy

U
Haar measure

dg=diMGrv/h=cl Ae? A--- AedMG  Leftright invariant.

volume V = / dg



phi”3 matrix scalar field theory on G

h“”@uqb@uqb — —(£a¢)2
=) 5 = [ dg Tr (~5(Lad(9))? + 5m20(9)% + 556(0)?)

®(g) : N x N hermitian, each element is a function on G.

Possesses G x G symmetry.

Right G invariance
e

1 ¢ < l
(#(g1)ij(92) k1) = A(9195 ~)dudjk 91 N go

7 k
i J
- \/ .
\W —K 5235kl5mn
m [




Large N reduction on G

5= [dg Tr (—5(Lad(@)? + 5m20(0) + r6(9)*)

Reduced model

Construct a matrix model by the following procedure:

¢(g) — $7 Lo — [Ea %Y 1k7 ]7 /dg — v

Consider the tensor product of the function space on G
and a k-dim vector space,

—~

¢ : hermitian operator acting on the tensor space.

_ lip o m2 1090 1 23
== Sr = oTr (—[La, @1 + -3 + 2rd®)




Reduced model as a bi-local field theory
Coordinate representation.
Sp = Tt (5 [La, 812 + S + 2nd°)

ﬂ (g|lg") = #(g,g") : bi-local kxk matrix field on G

Ea|g> — _Ea|g>7 <g|f1a — £a<g|

1 N\ 2 1
Sy = v/dgdg' tr {Ecﬁ(g’,g) (Eég) + Y9 )) ¢(9,9") + 5m2¢(g’,g)¢(g,g’)}

1
+o / dgdg'dg” ~r tr(¢(g,9)9(g,9")9(g",9))

Change of variables

u=g, (=g lg =) (E&") + ng')) $(9,9) = LM ¢(g,9)

Haar measure 1s invariant.



Perturbative expansion
1

(6(91,91)0pd (92, 92)~s) = ;A(91951)5(g'1_191,9'2_192)5045%7

End points propagate as particles on G.
The relative coordinate conserves during propagation.
The situation is the same as in the flat space, and the

same analysis holds.

m) | Large N reduction holds on G.

All we need is the right G invariance.

& Action is written in terms of left derivatives.



UV regularization

The function space on G is identified with the representation space
of the regular representation.

(Or(M)y)(9) = ¢(h™tg), (Or(h)¥)(9) = ¢(gh)

Peter-Weyl’s theorem %(g) = Z Z C[T]R[r] (9) rruns for all irreducible
Ty representations.

‘ Vieg = D Vr ® V; N

=@L®14, Ra=@140LL
r r

LELT] : rep. matrix of g intherep.r
\_ dy :dimension of the rep. r -/

. 2
Corresponding to UV cut off A , introduce In = {r;Ca(r) < A7},

mmm) | Restrict the sum to I A - Preserves G x G symmetry.




Correspondence between reduced
model and original theory

/ 2 27 73 \
Sp = vTr (= 5{La 1% + 5m25% + 6%
GxG
¢ : NxN hermitian matrix Ly = ( D e 1dr> ®1, | nvariance
\ relp /
n= ) dy Function space on G ~ n-dim vector space
parameters rEIn
1 N =nk Size of the matrix
 v=V/n Volume of each cell

limit AN— oo(n— o), k— oo, k— 0, with A\ = k2N = r2nk fixed

‘ne The reduced model reproduces the original theory in the planar limit.

Correlation rr(TrO(@1)0(@2) -+ $(20))) =~ (TH(B@1)3(w2) - Ba)))r

functions _ haF . inbT 0%
¢(g) — ezOGLa¢e—20 Ly for 9 = € a.



Example: G=SU(2)=5’
e Y

[1/2]
Lg = Lg ® 1> ® 1

K
\ L @154
K
n= 3 (2j+1)*

7=0
v = 1672/n

. xew Y

Preserves SO(4)=SU(2)xSU(2) symmetry.




Gauge theories on group manifolds

Expand gauge fields by the right invariant 1-form, and use Maurer-Cartan equation.

A= Xge® mm) F = célLA +:1ANA /Spin connection
= S (iLaXp — iLpXa + FoptXe + i[Xa, Xp])e A €

: 1
YM action S = 22 / Tr(F A xF) Ishii-Ishiki-Shimasaki-Tsuchiya (08)

1
= 2.2 / dg Tr(LaXp — LpXa —if ;)  Xe + [Xa, Xb])2
“SRight G invariant !

Reduced model g, = _ﬁTr([Ea, Xp] = [Lp, Xal — if ;S Xe + [Xa, Xp])?
KR

v - PPN S . 7 o
=~ 5 Tr([La + Xa, Ly + Xy — if (L + Xe))?

K

v .- , \2
Absorb the background L to X. S) = —m_ﬁ’ ([Xa, Xp] — 4 achc)

—~

Dimensional reduction of YM X, = L, isa classical solution.
action.



Gauge theories on group manifolds (cont’d)

Large-N reduction works on group manifolds.

Matrix model

v s s ol
4K_2 Tr([Xa’Xb] —1 achc

is equivalent to YM theory on G, if we expand X, around L =T "% ®1,,

S =—

and take the large-N limit.



Gauge theories on group manifolds (cont’d)

The same redefinition holds for the % T (_ % (Lot R d? 4V ($)>

matter fields of adjoint representation. K
The resultant theory is also the - o 2T (_1[ Xo 312 + V(@)
dimensional reduction to zero-dim. R 2

Gauge symmetry X! = U0X,07, ¢ = 080" e
If G is semi-simple, no massless mode exists.
- The background is stable at least perturbatively.

Probably tunneling to the other solutions is suppressed in £k — oo limit.

—

m===) No need of remedies such as quenching or twisting.

- Regularization that preserves gauge symmetry, SUSY, and G x G.




Large N reduction for N=4 SYM on
RxS” and the AdS/CFT duality




N=4 SYM on RxS’

Equivalent to N=4 SYM on R* by conformal mapping.

1 1 1 - 1., 1 5
S=,> / dtdg Tr (ZFﬁ,;F“” + S DpXmDF Xom + X7 — X, Xn]

1 i 1
—|—§\UTDtW + E\UTW%’ELLDM‘U - EWT”Ym[Xma W])

M:97907¢7 ﬁ’)lj:t767907¢7 man:47'°' 79

PSU(2,2]4) symmetry (32 supercharges). \ Express space derivatives in
L.

] . I SetlL =0 formally.
v
Sr=— / dt Tr [E(DtXMF = Z1Xar X2 + SWIDW — Sty Xy, W]

Reduced model (Time remains.)

-I—%(XG)Q + %(Xm)Q + i€ gpeXaXpXe + %wwlﬁw
The same form as plane wave matrix model (Berenstein-Maldacena-Nastase).

SU(2|4) symmetry (16 supercharges) is manifest.



N=4 SYM on RxS’ (cont’d)

BMN matrix model becomes equivalent to the N=4 SYM on RxS3 in the
large-N limit, if we expand X, (a =1~ 3) around

( O]
Lgl/ 2] ® 1o

L]

® logi1 )

® 1

This regularization preserves SU(2) x SU(2|4) (16 supercharges).

Many explicit checks for perturbation series have been done for
YM and CS theory on S3. Ishiki-Shimasaki-Tsuchiya (08~09)



Generalizations to CS theory
and Coset spaces




Chern-Simons-like theories on group
manifolds

4 1 2
S=—/Tr(A/\dA—|—§A/\A/\A)/\*f
w

~

9 f=fabcea’/\eb/\ec )

«f € Hdim G_3(G)

Gauge transformation

S'=9— %/Tr (U—ldU AUYdU A U—ldU) A xf
w
1

= S——/ Tr (U=tdU AU~YdU AU~ dU ° '
3w Jos ( ) Poincare duality
= ¥ i Express derivatives in L.
w is appropriately chosen. l
Reduced model Set L =0 formally.

v 1 S 27 .
Sy = —F3%Ty (— FocaXaXq+ —XaXch)
6w 2 3




Large N reduction on coset spaces

H: Subgroup of G. & =/§A, 4!

H G/H

In field theory, we can start from a theory on G, and apply a consistent reduction
to G/H by imposing a constraint O @ =0, which is also right G invariant.

O , ‘infinitesimal left translation along A

For scalar field, 6, ¢ = L ,¢.
Reduced model given by

1l rr  ~q2

S = —UTr(E[La,gb] +%m2¢;2)

with constraints [i A,qg] =0

is equivalent to the scalar field on G/H in the large-N limit.



Large N reduction on coset spaces
(cont’d)

Similar construction works for gauge theory.
For vector field, 0, X, = L, X+ f,.,X,.

Large-N YM theory on G/H is described by

(¥

S=-25 1 (X Xy ]S, X, -1 wilt).

with constraints 6 X, = [ZA,A,)A(O{] —ianﬁ)A(ﬁ =0,

where ia is the same as in the gauge theory on G.

D-dim manifold is described by D matrices.

Example Gauge theory on S*=S0(5)/SO(4).
Recovers R* in the infinite volume limit.




Summary and outlook




Summary

The large N reduction holds on group manifolds and
coset spaces.

Background is stable at least perturbatively, if the group
is semi-simple.

Super symmetry is maintained at least partially.

It will be useful as a tool for numerical analyses.

Outlook
Generalization to arbitrary manifolds.
Numerical simulation for N=4 SYM, for example.

It might shed a light on matrix models for string theory,
especially on the emergence of space-times.



