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In collaboration with I. Aniceto and K. Jin 



Overview of the talk: 

Classical string solutions: spiky strings 

 AdS string as a sigma model 

 N-spike string solutions 

Moduli dynamics 

 Strings on R×S2: Giant magnons 

 N-magnon dynamics 

 Poisson structures and Quantization 

Conclusions and Future 
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I. Introduction 

Gauge/String duality: 

    N=4 SYM is given by string theory on AdS5×S5 

    [Exact: Bethe Ansatz, all coupling, …] 

Classical strings: 

    -- Offers predictions for strong coupling SYM 

    -- Alday-Maldacena program of evaluating 

amplitudes in YM (minimal area surfaces) 

    -- Study of classical string moduli space 

promises to give deep insight into AdS/CFT 
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Folded string and spiky extensions: 
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Conformal gauge : 

 

 Ansatz : 

 

 Solution : 

GKP: hep-th/0204051 
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Static n-spike solution: 

 Physical gauge with ansatz : 

 

 

 Equation : 

M. Kruczenski: hep-th/0410226 

To study the dynamics of 

spikes, it is convenient to 

introduce the soliton picture. 
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Spikes as sinh-Gordon solitons: 
 Asymptotics near the turning point: GKP solution 

 
 Let                     where           , then one gets 

 
Denote                ,  we have  

 

 It is easy to solve for 

 

AJ, K. Jin, C. Kalousios, A. Volovich: 0712.1193 

soliton 



AdS string as a sigma model: 

We parameterize AdSd  with d+1 embedding 

coordinates Y subject to the constraint  

 
Conformal gauge action : 

 
 Equations of motion : 

 
 Virasoro constraints : 
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II. AdS3 σ-model reduction: 
Done at the level of equations of motion: 

 

Choose a basis:                              , where B4 is an 

orthonormal vector to the rest. 

Define: 

 
 EOMs: 

H. J.  de Vega and N. Sanchez, ‘93 

Generalized sinh-Gordon equation! 

K. Pohlmeyer, ‘76 



 Lax pair: 

 

 

 

 

 Zero curvature condition. 

 Scattering equations: 

 

 

 

Construction of the string solution: 

Reconstruction of the string: Inverse scattering 
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One-spike dynamical solution: 
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Energy of the spike:  

N. Dorey, M. Losi: 1001. 4750; AJ, K. Jin: 1001.5301 



Two-spike dynamics: 
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The energy of the two-spike solution is the sum of 

two individual spike energies: 



Euclidean world-sheet: 

 Relevant for the Alday-Maldacena program 

 Example of one-soliton 

 

 

One regularized cusp near the boundary of 

AdS3 at r=rc: 

 

 

 

Originally constructed by Berkovits and 

Maldacena. 
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Berkovits, Maldacena: 0807.3196 

Alday, Maldacena: 0705.0303 



N-spike solution: 
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Sinh-Gordon : 

Spiky Strings : AJ, K. Jin: 0903.3389,1001.5301 



 Spike locations can be described by (collective) 
coordinates:         ,                   with     

    an interacting Lagrangian   

 

 

 In the near static limit, Kruczenski gave the 
interaction potential: 

 
 

An exact description should be deduced from the 
dynamical n-spike solution: it is related to the 
system describing n-solitons. 

Moduli dynamics: 
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Kruczenski ‘04 

Freyhult,Kruczenski,Tirziu ‘09 

Dynamical system of Calogero (RS) type 



III. R×S2: Giant magnons 

 Time-like conformal gauge: 

 

 Equation of motion: 

 

 Reduction: 

 

 

One-magnon solution: 

15 



Energy of Giant magnon: 

 Energy of the soliton: 

 

 

 Energy of Giant magnon is 

inversely proportional to the 

energy of the soliton: 

 

 

 Two magnons: 
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Hofman, Maldacena: hep-th/0604135 



Scattering of Giant magnons 

 Scattering of solitons: 

 

 

 Same time delay: 

 

 

Different phase shift: 

 

 

Different dynamical system 
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I. Aniceto, AJ: 0810.4548 



Puzzle 

 The moduli (collective coordinates) of 

sine-Gordon solitons and the stringy 

magnons obey the same equations of 

motion: 

 

 From the energy we deduce 

 
 But seemingly this is in contradiction with 

the fact that the time is the same 

       Different Lagrangians --- Same EOM. 
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Time is the same! 

? 



Non-local Lagrangian for sine-Gordon: 

 The sine-Gordon equation                         is 
associated with the local Lagrangian: 

 

 

 But the stringy (R×S2) reduced Lagrangian differs 
from 

 Also true for the full quantum theory 

One can perform the Pohlmeyer reduction at 
the level of path integral: 

 

 

   where                          

   for a SU(N) chiral model. 
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B.E. Fridling, AJ: ‘84 ; Tseytlin, Fradkin: ‘84  



S2=SO(3)/SO(2) coset model: 

 The Lagrangian: 

 
   where the currents are 

 
 The third component will be gauged away, 

while the first two remain dynamical. 

 

 The Bianchi identity: 
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Constraints 



The non-local Lagrangian: 
 Introduce the light-cone notation: 

 
 The Lagrangian: 

 

 

 

                    are Lagrange multipliers 

 The non-local Lagrangian 
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where 



Poisson structures: 
 Usual Poisson bracket: 

 Integrable theories have a sequence of 
compatible Poisson brackets. 

 For the non-local Lagrangian: 

 
 Non-local Poisson bracket 

 

 

 

Derived originally by A. Mikhailov: hep-th/0511069 

Quantum theory measure: 
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AJ, K. Jin: in preparation 



Dynamical system: spikes vs solitons 
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 For soliton-soliton scattering:  

 
 Follow the poles of the Hamiltonian density, we 

find the trajectories of the poles: 

 
 The N-body Hamiltonian: 

 
 Soliton-soliton scattering potential:  

 

 Integrable, Lax matrix L:  

G. Bowtell and A.E.G. Stuart, ‘77 

S.N.M. Ruijsenaars and H. Schneider, ‘86 



Moduli space dynamics: 

N-body Hamiltonian 

 N-solitons: 

 

 

 N-magnons: 

 

 

 How are the equations of motion to be 

the same? 
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Different Poisson structure: 

 Lagrangians: 

 

   we have 

 

 

 

 Theorem: Integrable systems not only 

have a sequence of Hamiltonians, 

 

   but also a sequence of Poisson structures! 

25 



Equations of motion: 

 Hamilton’s equations 

 

 

 The string and soliton use different 

Hamiltonian and different Poisson structures 

to keep the same equations of motion. 
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Tractable dynamical model: 

 Separated magnons: 

 

 

 

 Symplectic form: 

 
 

Conserved quantities: 

 
 Hierarchy: 
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Poisson structure for magnons: 

 The soliton Hamiltonian 

 
 For magnons: 

 

 

 Equations of motion coincide: 

 
With the Poisson bracket: 
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I. Aniceto, AJ: 0810.4548; I. Aniceto, J. Avan, AJ: 0912.3468 



Conclusions: 

We used the inverse scattering technique to 

construct a (most) general set of AdS string 

classical solutions; 

 This construction features a one-to-one 

correspondence between spikes (of the 

string) and solitons; 

Discussed the dynamics of spikes/magnons 

and their moduli space. 
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Future: 
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