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We consider N = 2 supersymmetric gauge theories in 4-

dimensions and study the case when the theory possesses

conformal invariance.

Simplest example of a conformal invariant theory:

SU(2) gauge theory with Nf = 4 hypermultiplets



We may consider its generalizations:

Chain of SU(2) gauge theories with bifundamentals

and fundamental at the ends: quiver gauge theories

As is well-known, such quiver theories are obtained using the

brane construction as shown in the figure:



There are n + 1 NS5 branes and a pair of D4 branes are sus-

pended between neighbouring NS5 branes giving rise to

SU(2)1 × SU(2)2 · · · × SU(2)n gauge symmetry. Two D4



branes at extreme left and right extend to x6 = ±∞ repre-

senting fundamental hypermultiplets.

Each SUi(2) theory couples to Nf = 4 hypermultiplets and

is conformally invariant. Thus there exists a set of marginal

parameters in the theory

{τi =
θi

π
+

8iπ

g2
i

, i = 1, , n}

Uplifting this brane configuration to 11 dimensions

=⇒ M theory picture with an M5 brane wrapping a Riemann



surface (cylinder) with punctures.

Thus, conformal N = 2 theories

≈ an M5 brane wrapping a Riemann surface with a

number of punctures.

Number of parameters of Riemann surface Cg,n of genus g



with n punctures: 3g − 3 + n

This agrees with the number of gauge theory parameters {τi}.

Hence one expects Gaiotto

S-duality group of quiver gauge theory =

mapping class group of Riemann surface Cg,n

Remarkable observation Alday,Gaiotto,Tachikawa



⟨
∏

Vmi(τi)⟩ =

∫
[da] |ZNek(τ ; a; m)|2

Liouville Nekrasov partition function

correlation function of SU(2) gauge theory with ϵ1, ϵ2

Exact relationship between 4-dim CFT and 2-dim CFT.

Higher rank generalization: given by Toda theories

• direct proof ?; Shapovalov matrix, degenerate Liouville

field etc



• generalities

Wilson loop, surface operators, anomaly etc.

♠ Matrix Model

Basic idea: Consider Liouville correlation function



⟨
∏
a

eiαaϕ(qa)
N∏

i=1

∫
eibϕ(zi) dzi⟩

screening ops.

=
∏
a<b

(qa − qb)
2αaαb

∫ ∏
i,a

dzi (zi − qa)2bαa
∏
i<j

(zi − zj)
2b2

This suggests a matrix model with action Dijkgraaf,Vafa

S =
∑
a

αa log(M − qa)

and zi
′s are identified as matrix eigenvalues.

As we shall see that this model in fact reproduces Seiberg-



Witten theory (also for the asymptotically free cases Nf =

2, 3). But it still has mysterious features.

Let us consider the simple case of 4 hypermultiplets with masses

m±, m̃±. Define

m0 =
1

2
(m+ − m−), m1 =

1

2
(m̃+ − m̃−)

m2 =
1

2
(m+ + m−), m3 =

1

2
(m̃+ + m̃−)



M theory curve is given by

CM : (v − m+)(v − m−)t2

+c1(v
2 + Mv − U)t + c2(v − m̃+)(v − m̃−) = 0



For convenience, set c1 = −(1 + q), c2 = q. Then

CM : v2(t − 1)(t − q) = v(2m2t
2 + (1 + q)Mt + 2qm3))

−m+m−t2 − (1 + q)Ut − qm̃+m̃−

By shifting v to eliminate its linear term and setting v = xt

CM : x2 =

(
m2t

2 + (1 + q)M
2 t + m3q

t(t − 1)(t − q)

)2

+
(m2

0 − m2
2)t

2 − (1 + q)Ut + (m2
1 − m2

3)q

t2(t − 1)(t − q)



Seiberg-Witten differential is given by

λSW =
xdt

2πi
≈

m∗
t − t∗

Masses appear as residues.

Pole at t = 0, t = ∞; residue ±m1, ±m0.

Require pole at t = 1 with residue ±m2 and t = q with

residue ±m3 =⇒

M =
−2q

1 + q
(m2 + m3)

Relation of special geometry

a =

∫
A

λSW , aD =
∂F

∂a
=

∫
B

λSW



♣ UV and IR gauge coupling constant

Standard SW curve of Nf = 4 in massless case

CSW : y2 = 4x3 − g2ux2 − g3u
3

Here

g2(q) =
1

24

(
ϑ3(q)8 + ϑ2(q)8 + ϑ4(q)8

)
,

g3(q) =
1

432

(
ϑ4(q)4 − ϑ2(q)4

)
×
(
2ϑ3(q)8 + ϑ4(q)4ϑ2(q)4

)



Holomorphic differential ω is given by

ω ∝
dx

y
=

dx√
4x3 − g2u

2x − g3u
3

∂a

∂u
=

√
2

4π

∫
A

dx

y
=

1

2
√

2u

On the other hand M theory curve in the masssless limit is

given by

CM : x2 = −
(1 + q′)U

t(t − 1)(t − q′)

Here U is related to u = trϕ2 as

U = Au



and we have used q′ in order to distinguish it from q of CSW .

SW differential is given by

ω ∝

√
−(1 + q′)A

u

dt√
t(t − 1)(t − q′)

After shift t → t + (1 + q′)/3 and rescaling t = 4z

t(t − 1)(t − q′)

= 16

(
4z3 −

1

12
(1 − q′ + q′2)z −

1

432
(2 − 3q′ − 3q′2 + 2q′3)

)



By comparing with the definition of g2, g3

g2(q) =
1

24

(
ϑ3(q)8 + ϑ2(q)8 + ϑ4(q)8

)
=

1

12
ϑ3(q)8

(
1 −

ϑ2(q)4

ϑ3(q)4
+

ϑ2(q)8

ϑ3(q)8

)
g3(q) =

1

432

(
ϑ4(q)4 − ϑ2(q)4

) (
2ϑ3(q)8 + ϑ4(q)4ϑ2(q)4

)
=

1

432
ϑ3(q)12(2 − 3

ϑ2(q)4

ϑ3(q)4
− 3

ϑ2(q)8

ϑ3(q)8
+ 2

ϑ2(q)12

ϑ3(q)12
)

we notice

q′ =
ϑ2(q)4

ϑ3(q)4
, A =

1

ϑ2(q)4 + ϑ3(q)4



We regard q in SW curve as the gauge coupling in the infra-

red regime q = qIR and q′ in M theory curve in the ultra-

violet regime q′ = qUV .

Relation

qUV =
ϑ2(qIR)4

ϑ3(qIR)4

has been noticed by various authors. Grimm et al, Marshakov

et al

♠ Matrix model and modular invariance

Equation of motion of matrix model is given by∑ mi

λI − qi
+ 2gs

∑
I ̸=J

1

λI − λJ
= 0



We have q1 = 0, q2 = 1, q3 = qUV . Eigenvalue distribution

will look like given in the figure.



Resolvent of the theory is defined by

Rm(z) = gsTr
1

z − M

which satisfies the loop equation

⟨Rm(z)⟩2 = −⟨Rm(z)⟩W ′(z) +
f(z)

4

f(z) = 4gsTr

⟨
W ′(z) − W ′(M)

z − M

⟩
=

3∑
i=1

ci

z − qi

Matrix model curve (spectral curve) is defined by the dis-



criminant of the loop equation

Cmatrix : x2 = W ′(z)2 + f(z)

=

(
m1

z
+

m2

z − 1
+

m3

z − q

)2

+
(m2

0 − (
∑

i mi)
2z + qc1

z(z − 1)(z − q)

Eq. of motion =⇒
∑
i

ci = 0

Residue at ∞ being ±m0 =⇒ c2 + qc3 = m2
0 − (

∑
mi)

2

Then

qc1 = (1 + q)m2
1 + (1 − q)m2

3 + 2qm1m2 − 2qm2m3

+2m1m3 − (1 + q)U



• Modular invariance

Consider the massless limit of spectral curve (use q instead of

qUV )

x2 = −
(1 + q)U

z(z − 1)(z − q)
= −

u
θ4
3

z(z − 1)(z − q)

This is invariant under

I : (z, x) → (1 − z, x), q → 1 − q, u → −u, S

II : (z, x) → (
1

z
, −z2x), q →

1

q
, u → u, STS



Recall q =
θ4
2

θ4
3

.

Consider massive case. Under the S- and STS-transformations

mass parameters are transformed into each other

I : (0, 1, q, ∞) → (1, 0, 1 − q, ∞), m1 ↔ m2

II : (0, 1, q, ∞) → (∞, 1,
1

q
, 0), m0 ↔ m1

Under these transformations, the spectral curve should be in-

variant. We impose the conditions

x2(z; m0, m1, m2, m3; q) = x2(1 − z; m0, m2, m1, m3; 1 − q)

x2(z; m0, m1, m2, m3; q) =
1

z4
x2(

1

z
; m1, m0, m2, m3 :

1

q
)



Requirement of modular invariance determines completely

the mass dependence of the parameter U . Solution to the

above conditions is given by

(1 + q)U =
u

ϑ4
3

− q(m2 + m3)
2 +

1 + q

3

 3∑
i=0

m2
i



• Asymptotically free theory with Nf = 3

precise relationship between u and Trϕ2 Seiberg-Witten



u = ⟨Trϕ2⟩ −
1

6
(ϑ4

4 + ϑ4
3)

3∑
i=0

m2
i

Recall

m± = m2 ± m0, m̃± = m3 ± m1,

We take the limit

m̃− → ∞, q → 0,

with

m̃−q = Λ3 fixed



Matrix action reduces to

W (M) = m̃+ log M −
Λ3

2M
+ m2 log(M − 1).

Spectral curve for Nf = 3 theory becomes

x2 =
Λ2

3

4z4
−

m̃+Λ3

z3(z − 1)
−

u − (m2 + 1
2m̃+)Λ3

z2(z − 1)
+

m2
0

z(z − 1)

+
m2

2

z(z − 1)2
−

m2Λ3

z2(z − 1)
.

Free energy and discriminant of the model agrees completely



with that of the standard SW curve

y2 = x2(x − u) −
1

4
Λ2

3(x − u)2

−
1

4
(m2

+ + m2
− + m̃2

+)Λ2
3(x − u) + m+m−m̃+Λ3x

−
1

4
(m2

+m2
− + m2

−m̃2
+ + m̃2

+m2
+)Λ2

3

• Asymptotically free theory with Nf = 2

Spectral curve:

x2 =
Λ2

2

4z4
+

m̃+Λ2

z3
+

u

z2
+

m+Λ2

z
+

Λ2
2

4



Matrix action:

W (M) = m̃+ log M −
Λ2

2M
−

Λ2M

2

Predicts the same free energy and discriminant as the SW

curve

y2 = (x2 −
1

4
Λ4

2)(x − u) + m+m̃+Λ2
2x −

1

4
(m2

+ + m̃2
+)Λ4

2

♠ Mysteries

• Integration contour, range of integration

• What about Nf = 0, 1 ?



• Another matrix model: generalization of CP1 model with

action

TrM(log M − 1) Klemm,Sulkowski


