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We consider A/ = 2 supersymmetric gauge theories in 4-
dimensions and study the case when the theory possesses
conformal invariance.

Simplest example of a conformal invariant theory:

SU (2) gauge theory with N = 4 hypermultiplets



We may consider its generalizations:
Chain of SU (2) gauge theories with bifundamentals

and fundamental at the ends: quiver gauge theories

As is well-known, such quiver theories are obtained using the

brane construction as shown in the figure:
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There are n + 1 NS5 branes and a pair of D4 branes are sus-
pended between neighbouring NS5 branes giving rise to
SU(2)1 x SU(2)2--- x SU(2), gauge symmetry. Two D4



branes at extreme left and right extend to xg = o0 repre-
senting fundamental hypermultiplets.

Each SU;(2) theory couples to N = 4 hypermultiplets and
Is conformally invariant. Thus there exists a set of marginal

parameters in the theory

Uplifting this brane configuration to 11 dimensions

—> M theory picture with an M5 brane wrapping a Riemann



surface (cylinder) with punctures.

Thus, conformal A/ = 2 theories
~ an M5 brane wrapping a Riemann surface with a
number of punctures.

Number of parameters of Riemann surface C, ,, of genus g



with n punctures: 3g —3+n

This agrees with the number of gauge theory parameters {; }.

Hence one expects Gaiotto

S-duality group of quiver gauge theory —

mapping class group of Riemann surface Cy

Remarkable observation Alday,Gaiotto,Tachikawa



T Viny (72)) = / da] | Zxer(r; a3 m)|?

Liouville Nekrasov partition function

correlation function  of SU(2) gauge theory with €1, €

Exact relationship between 4-dim CFT and 2-dim CFT.
Higher rank generalization:  given by Toda theories

e direct proof ?; Shapovalov matrix, degenerate Liouville
field efc



e generalities

Wilson loop, surface operators, anomaly efc.

& Mairix Model

Basic idea: Consider Liouville correlation function
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This suggests a matrix model with action Dijkgraaf,Vafa
S — Z ag log(M — qq)
a

and z;’s are identified as matrix eigenvalues.

As we shall see that this model in fact reproduces Seiberg-



Witten theory (also for the asymptotically free cases Ny =
2, 3). But it still has mysterious features.

Let us consider the simple case of 4 hypermultiplets with masses
m4, m4. Define
1

mo = (my —m_), my =

m2 = §(m+ +m_), mg =



M3 M2
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M theory curve is given by

Crr: (v —mgy)(v—m_)t?
+c1(v? + Mv — Ut + ca(v — my)(v —1m_) =0



For convenience, set c; = —(1 4+ q), c2 = q. Then

Car: v2(t — 1)(t — q) = v(2mat? + (1 + q) Mt + 2gms3))
—m_|_m_t2 — (1 + (I)Ut —gmym_

By shifting v to eliminate its linear term and setting v = «xt

2
2 mat? + (1 + q)%t + m3q
Cpr:x” =
t(t —1)(t — q)
(m§ — m3)t> — (1 + q)Ut + (m] — m3)q

" 2(t — 1)(t — q)




Seiberg-Witten differential is given by

xdt M

A — T~
SW = onmi  t—t,

Masses appear as residues.

Pole att = 0,t = oo; residue +my, tmy.

Require pole at t = 1 with residue +tm-o and t = q with

residue +ms —

Relation of special geometry
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& UV and IR gauge coupling constant

Standard SW curve of N f= 4 In massless case

Csw : y° = 4z° — goux? — gzu®
Here
92(9) = — (93(0)® + V2()® + V4(a)®)
24 ’
— — (9 4 9 4
93(0) = —o (Va(@)* - V2(a)")

X (2193(q)8 + ?94(61)4192(61)4)



Holomorphic differential w is given by

dx dx
w X — =
Yy \/4.133 — gguzaz — ggu3

8a_\/§ dx 1

ou  Am A? B 2 2u
On the other hand M theory curve in the masssless limit is

given by

2 _ (1+ q')U
tt— 1)t — ')

Cpr:x” =
Here U is related to u = tr¢? as

U = Au



and we have used ¢’ in order to distinguish it from q of Cqyy .
SW differential is given by

umx¢_a+q%4 dt
u Vit —-1)(t - q)

After shiftt — ¢t 4 (1 4+ ¢’)/3 and rescaling t = 4z

t(t—1)(t —q')

1 1
= 16 <4z3 — E(l —q q’z)z — 4—32(2 — 3¢ —3q"% + 2q'3)>




By comparing with the definition of g2, g3

92(a) = - (93(2)° + 92(0)° + 94(0)®)

1 92(a)* | 92(q)°
= 123" (1 RO ﬂ3<q>8>

93(a) = > (94(a)* — 92(0)*) (203(0)® + Va(a)*02(a)*)

432
1 92(q)t _92(q)® _92(q)t?
= —3(q)'?(2 — 3 ( )4 BpLL )8 +2 ( )12)
432 93(q) Y3(q) 93(q)
we notice

q/ _ 192((1)4 A — 1
93(q)*’ I2(q)* + I3(q)*




We regard q in SW curve as the gauge coupling in the infra-
red regime ¢ = grr and ¢’ in M theory curve in the ultra-
violet regime ¢’ = qprv.

Relation

has been noticed by various authors. Grimm et al, Marshakov
et al

& Matrix model and modular invariance
Equation of motion of matrix model is given by




We have q; = 0,92 = 1,93 = qryy- Eigenvalue distribution

will look like given in the figure.
A

> A

|_\ — — — — — — — — — — — o e



Resolvent of the theory is defined by

Rin(z) = gsTr

which satisfies the loop equation

(Bm(2))? = — (Bn(2)W/(2) + 1)
B W/(z) - W/(M)\ S
f(z)_4gSTr< z— M >_i§::12_qri

Matrix model curve (spectral curve) is defined by the dis-



criminant of the loop equation

Crnatriz x? = W,(z)z + f(2)
(ml ~ mg2 | mg )2_|_ (mg — (32; mi)*z + g

= z-1 z—g 2(z = 1)(z — ¢)

Eq. of motion —> » "¢; =0

i
Residue at co being =mg = c2 + gcg = mo Z mz)2
Then

gc1 = (1 + Q)m% + (1 — Q)mg, + 2gmimsg — 2qmams
+2mims3 — (1 4+ q)U



e Modular invariance

Consider the massless limit of spectral curve (use g instead of

quv)

Uu

22 A+q9U 03
z(z —1)(z — q) z(z —1)(z — q)

This is invariant under

I:(z,z)— 1—2,2), q—1—q, u— —u, S
1 1
II:(z,2) — (=, —2%¢), q— -, u—u, STS
< q



4
Recall ¢ = -2.
q 0:;4’

Consider massive case. Under the S- and STS-transformations
mass parameters are fransformed into each other

I:(0,1,q,00) — (1,0,1 — q,00), M1 <> M2

IT: (0,1,q,00) — (oo,l,a,O), mg < mq

Under these fransformations, the spectral curve should be in-
variant. We impose the conditions

2 2
X (Z; meo, 1M1, M, M3, Q) — & (1 — Z,1NnQ, M2, M1, M3, 1 — q)

wz(z; Mmoo, M1, M9, MN3; q) = ;CB2(;; mi, Mmoo, M2, 13 : a)



Requirement of modular invariance determines completely
the mass dependence of the parameter U. Solution to the

above conditions is given by

(' 1+ q
(1+ @)U =~ — a(ma + m3)” + —— Zm

3

e Asymptotically free theory with Ny = 3

precise relationship between u and Trq52 Seiberg-Witten
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We take the limit

with

Mo -

m_ — 00,

- ™My,

m_q = A

M4+ = Mg

q — 0,

fixed

- M1,



Matrix action reduces to
. A3
W (M) =m4 log M — o + molog(M — 1).

Spectral curve for N = 3 theory becomes

~ 1 ~
5 A% my As u — (mo + 5m4)Ag m(z)

424 z3(z — 1) B z2(z — 1) i z(z — 1)

2
| ms m2A3

Cz(z — 1)2 - 22(z — 1)

xr

Free energy and discriminant of the model agrees completely



with that of the standard SW curve

1
y? = z%(x —u) — ZA%(CB — u)?

1
=ML+ mZ + M)A (@ — u) + mym i Age
1
2 ~ 2

~ 2 2
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—Z(mimz_ +m

e Asymptotically free theory with NV f=2
Spectral curve:

2 ~ 2

o A5 myAy u  miAy  Aj
xr = 4 | 5 |
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Matrix action:

W (M) = 1y log M — —2 _ A2M
= m4lo - — —
M oM 2

Predicts the same free energy and discriminant as the SW

curve

1 - 1 _
y? = (@2 — A} (@ — u) + mimyAde — (m? +m?)AS

& Mysteries

e Integration contour, range of integration
e Whatabout Ny = 0,17



e Another matrix model: generalization of CP! model with
action
TrM(log M — 1) Klemm,Sulkowski



