Fiber bundles and matrix models -gauge/gravity correspondence for SU(2|4) theories-

A. Tsuchiya (Osaka U.)

In collaboration with

T. Ishii, G. Ishiki, S. Shimasaki (Osaka U.)

and Y. Takayama (NBI)

- JHEP 0611(2006)089 (hep-th/0610038)
- hep-th/0702xxx

Introduction

 Emergence of space-time is one of the key concepts of matrix models as nonperturbative definition of superstring

e.g.) Matrix theory BFSS IIB matrix model IKKT

• Eigenvalues of matrix in c=1 matrix model ~ Liouville direction

Das-Jevicki, Gross-Klebanov, Polchinski

- Bubbling AdS geometry LLM, Jevicki's talk
- It should also be useful to study relationship between field theories and matrix models
- large N reduction Eguchi-Kawai
- quenched reduced model

Bhanot-Heller-Neuberger, Parisi, Gross-Kitazawa twisted reduced model Gonzalez-Arroyo-Okawa ~ noncommutative field theory

- T-duality for D-brane effective theories `matrix T-duality' Taylor
- It is important to understand how curved space-time is realized in matrix models ~ our problem cf.) Hanada-Kawai-Kimura

Here we focus on the gauge/gravity correspondence for the SU(2|4) theories proposed by Lin-Maldacena

doubly interesting

- different vacua of one theory ~ different geometries
- suggest relations between fields theories on curved spaces and matrix model `inverse' of dimensional reductions We show these relations directly on gauge theory side

SU(2|4) theories and gauge/gravity correspondence

Start with N=4 SYM on $R \times S^3$ $SU(2,2|4) \supset SO(2,4) \times SO(6) \supset R \times SO(4) \times SO(6)$ $SO(4) = SU(2)_L \times SU(2)_R$ Divide by subgroup of $SU(2)_{R} \implies SU(2|4)$ theories 16 supercharges $Z_k \longrightarrow 1$ N=4 SYM on R x S³/ Z_k $S_{S^3/Z_k} = \int dt d\Omega_3 \operatorname{Tr}\left(\frac{1}{4}F_{ab}^2 + \cdots\right)$ U(1) \longrightarrow 2) 2+1 SYM on R x S² reduction $S_{S^2} = \int dt d\Omega_2 \operatorname{Tr} \left(-\frac{1}{2} (f_{12} - \phi)^2 - \frac{1}{2} (D_a \phi)^2 + \cdots \right)^2$ SU(2) ____ 3) plane wave matrix model Kim-Klose-Plefka $S_{PW} = \operatorname{Tr}\left(-\frac{1}{2}(Y_i - \frac{i}{2}\epsilon_{ijk}[Y_j, Y_k])^2 + \cdots\right)$ Common features: mass gap, discrete spectrum, many discrete vacua

Gravity duals

Lin-Maldacena

general form of smooth solutions of type IIA SUGRA that have SU(2|4) isometry

$$ds_{10}^{2} = \left(\frac{\ddot{V} - 2\dot{V}}{-V''}\right) \left\{ -4\frac{\ddot{V}}{\ddot{V} - 2\dot{V}}dt^{2} + \frac{-2V''}{\dot{V}}(d\rho^{2} + d\eta^{2}) + 4d\Omega_{5}^{2} + 2\frac{V''\dot{V}}{\Delta}d\Omega_{2}^{2} \right\}$$
$$\Delta = (\ddot{V} - 2\dot{V})V'' - (\dot{V}')^{2}, \quad \dot{} = \rho\partial_{\rho}, \quad \prime = \partial_{\eta}$$

 $V(\rho, \eta)$: electrostatic potential for axially symmetric system

- # of conducting disks T ~ topology
- Qs: D2-brane charge
- ds: NS 5-brane charge
- asymptotic behavior of V specifies a theory

config. of disks specifies a vacuum

Vacua

1) SYM on R x S^3/Z_k holonomy around generator of $\pi_1(S^3/Z_k) = Z_k$ $W = \operatorname{diag}(\underbrace{e^{i\frac{2\pi}{k}\beta_1}, \cdots, e^{i\frac{2\pi}{k}\beta_1}}_{N_1}, \underbrace{e^{i\frac{2\pi}{k}\beta_2}, \cdots, e^{i\frac{2\pi}{k}\beta_2}}_{N_2}, \cdots, \underbrace{e^{i\frac{2\pi}{k}\beta_T}, \cdots, e^{i\frac{2\pi}{k}\beta_T}}_{N_T})$ 2) SYM on $R \times S^2$ Dirac monopoles $\phi = \operatorname{diag}(\underbrace{q_1, q_1, \cdots, q_1}_{N_1}, \underbrace{q_2, q_2, \cdots, q_2}_{N_2}, \cdots, \underbrace{q_T, q_T, \cdots, q_T}_{N_T})$ $A_{\theta} = 0$ $A_{\varphi} = \begin{cases} (1 - \cos \theta) \phi & \text{for } 0 \le \theta < \pi \\ (-1 - \cos \theta) \phi & \text{for } 0 < \theta \le \pi \end{cases}$

concentric fuzzy spheres with different radii

3) PWMM

PWMM vs SYM on R x S^2

Outline of proof

See agreement of harmonic expansions of the theories around the vacua of two theories including int. terms

monopole harmonics by Wu-Yang $Y_{Jmq}(\theta, \varphi)$ $(|q| \leq J)$ II $j, j' \rightarrow \infty, j - j' = q$

`fuzzy' spherical harmonics $\widehat{Y}_{Jm}^{(jj')} \sim \sum_{rr'} C_{jr\,jr'}^{Jm} |jr\rangle\langle j'-r'| \qquad (|j-j'| \le J \le j+j')$

~basis for rectangular matrices

Topologically nontrivial configuration

continuum limit of concentric fuzzy spheres with different radii

= monopoles on S²

c.f.) Grosse-Klimcik-Presnajder, Baez-Balachandran-Ydri-Vaidya, Landi, Balachandran-Vaidya, Valtancoli, Steinacker, Karabali-Nair-Polychronakos, Carow-Watamura-Steinacker-Watamura, Aoki-Iso-Nagao, Madore, Balachandran-Govindarajan-Ydri, Ydri,Balachandran-Immirzi, Aoki-Iso-Maeda-Nagao, Aoki-Iso-Maeda,.....

SYM on R x S² vs SYM on R x S³/Zk

SYM on R x S³/Zk

 $\begin{array}{l} \text{theory around} & -\infty < s < \infty \\ \phi = k \text{diag} \left(\dots, \underbrace{\frac{s-1}{2}, \dots, \frac{s-1}{2}}_{N}, \underbrace{\frac{s}{2}, \dots, \frac{s}{2}}_{N}, \underbrace{\frac{s+1}{2}, \dots, \frac{s+1}{2}}_{N}, \dots \right) \\ A_{\theta} = 0 \\ A_{\varphi} = \left\{ \begin{array}{c} (1 - \cos \theta) \ \phi & 0 \le \theta < \pi \\ (-1 - \cos \theta) \ \phi & 0 < \theta \le \pi \end{array} \right. \\ \text{with periodicity} \quad X^{(s+1,t+1)} = X^{(s,t)} \end{array} \right\}$

theory around trivial vacuum

extension of matrix T-duality to nontrivial fiber bundle S³/Zk as S¹/Zk on S²

Extension of matrix T-duality

vertical-horizontal decomposition of tangent space of S³

matrix T-duality between S² and S³

theory around the vacuum of S_{S^2} with U(N×∞) and periodicity = S_{S^3} with U(N)

(s,t) $U(N) \rightarrow U(N \times \infty)$ $\hat{\phi} = \frac{1}{2}(\cdots, s-1, s, s+1, \cdots)$ vacuum $\hat{a}_1 = 0$ $\hat{a}_2^{[1]} = \tan \frac{\theta}{2} \hat{\phi}, \quad \hat{a}_2^{[2]} = -\cot \frac{\theta}{2} \hat{\phi}$ s/2: monopole charge periodicity for fluctuations $\tilde{a}_{\alpha}^{[I](s,t)} = \tilde{a}_{\alpha}^{[I](s-t)}, \quad \tilde{\phi}^{[I](s,t)} = \tilde{\phi}^{[I](s-t)}$ Fourier transf. on each patch (T-duality)

monopole charge =momentum

/Zk easy

We can extend matrix T-duality to that on general S¹ principal bundles

Ex.)

 S^5 as S^1 on CP^2 (gravitational and electromagnetic instanton) Heisenberg nilmanifold as S^1 on T^2 (constant magnetic flux on T^2)

Conclusion & Discussions

• We showed

theory around each vacuum of SYM on R x S³/Zk

= theory around a vacuum of SYM on R x S² with periodicity

theory around each vacuum of SYM on R x S²

= theory around a vacuum of PWMM

- Nontrivial check of gauge/gravity correspondence for SU(2|4) theories
- Continuum limit of concentric fuzzy spheres~ monopoles on S²
- Extension of matrix T-duality to that on S¹ principal bundles
- Theory around every vacuum of SU(2|4) theories is realized in PWMM
- N=4 SYM on R x S³ is realized in PWMM
- S³ is realized in terms of three matrices Y1 Y2 Y3

$$Y_{i} = -\begin{pmatrix} \ddots & & & & \\ & L_{i}^{[j_{s-1}]} & & & \\ & & & L_{i}^{[j_{s}]} & & \\ & & & & L_{i}^{[j_{s+1}]} & \\ & & & & & \ddots \end{pmatrix} \otimes \mathbf{1}_{N}$$

Outlook

- CS on $S^3 \leftarrow$ pure Yang Mills on S^2 with K. Ohta
- Nonabelian case e.g.) S^7 as S^3 on S^4 , SU(3) as U(2) on CP^2
- Lattice theory for N=4 SYM on R x S³ cf.) Kaplan
- Relate our findings to (flux) compactification in string theory

Review of matrix T-duality

Taylor

Dimensional reduction

U(N) YM on R^p x S¹

- $S_{p+1} = \int d^{p+1}x \, \frac{1}{4} \operatorname{Tr}(F_{MN}^2)$
- $x^M = (x^\mu, y)$ $\mu = 1, \cdots, p$

y~S¹ with radius R

Dp-brane

 $A_{\mu} = a_{\mu}$ $A_{y} = \phi$ dropy-dep.

U(N) YM with Higgs on R^p

$$S_p = \int d^p x \operatorname{Tr}\left(\frac{1}{4}f_{\mu\nu}^2 + \frac{1}{2}(D_\mu\phi)^2\right)$$

D(p-1)-brane

S¹ compactification

