Baryons from Instantons in holographic QCD

Shigeki Sugimoto (Nagoya)

hep-th/0701280 with S. Yamato (Kyoto)

See also) T. Sakai and S.S. hep-th/0412141, hep-th/0507073

> Komaba 2007 **Recent Developments in Strings and Fields** @ Komaba, Feb 10-11, 2007 - On the occasion of T.Yoneya's 60th birthday -

<u>Plan</u>

- 1 Introduction + brief review
- 2 Baryons as Instantons
- 3 Baryon spectrum
- 4 Outlook

Can string theory be (again) a theory of hadrons?

- Difficulties found in the old days.
 - Consistent in 10 dim.
 - \exists Massless graviton, gauge field.
 - QCD looks better
 - \Rightarrow string is not fundamental.
- The situation has drastically changed since the discovery of AdS/CFT.

• Lessons from gauge/string duality

If a holographic dual of QCD exists, we expect ...

Massive hadrons massless graviton, gauge field in 4 dim

The meson sector is described by the 5 dim $U(N_f)$ Yang-Mills-Chern-Simons theory in a curved background.

Meson S mode expansion

$$A_{\mu}(x^{\mu}, z) = \sum_{n \ge 1} B_{\mu}^{(n)}(x^{\mu})\psi_{n}(z)$$

$$A_{z}(x^{\mu}, z) = \sum_{n \ge 0} \varphi^{(n)}(x^{\mu})\phi_{n}(z)$$

Some complete sets

 We interpret φ⁽⁰⁾ ~ pion B⁽¹⁾_μ ~ ρ meson B⁽²⁾_μ ~ a₁ meson · · · (φ⁽ⁿ⁾ (n = 1, 2, · · ·) are eaten by B⁽ⁿ⁾_μ)
 π, ρ, a₁, · · · are unified in the 5 dim gauge field !

• Masses and couplings are roughly consistent with the experimer

 е	-	a	
-	-	5	1

mass	ho	a_1	ho'	(a'_{1})	ho''
exp.(MeV)	776	1230	1465	(1640)	1720
our model	[776]	1189	1607	2023	2435
ratio	[1]	1.03	0.911	(0.811)	0.706
	↑ input				

- Highlights [Sakai-S.S. 2004, 2005] [See also Son-Stephanov 2003]
- Geometric realization of the chiral symmetry breaking $U(N_f)_L \times U(N_f)_R \longrightarrow U(N_f)_V$

Structure of interaction

 consistent with
 Consistent with
 Consistent with

 Ando-Kugo-Uehara-Yamawaki-Yanagida 1985
 vector meson dominance
 Gell-Mann-Zachariasen 1961, Sakurai 1969
 GSW model
 Gell-Mann -Sharp Wagner 1962

Numerical estimate of the masses and couplings

roughly agrees with the various experimental data

Anomalies in QCD is reproduced

An easy derivation of WZW term [Wess-Zumino 1971, Witten 1983]
Witten-Veneziano formula [Witten-Veneziano 1979]

Baryon

> D4 wrapped on $S^{4} \simeq \text{instanton on } D^{2} \simeq$ [Witten, Gross-Ooguri 1998] [Atiyah-Manton 1989] [Skyrme 1961]

• Relation to Skyrme model

• Define
$$U(x^{\mu}) \equiv P \exp\left\{-\int_{-\infty}^{\infty} dz A_{z}(x^{\mu}, z)\right\} \in U(N_{f})$$

• behaves as the pion field in the chiral lagrangian.
• We obtain
 $S_{YM} \simeq \int d^{4}x \left[\frac{f_{\pi}^{2}}{4} \operatorname{Tr}(U^{-1}\partial_{\mu}U)^{2} + \frac{1}{32e_{S}^{2}} \operatorname{Tr}[U^{-1}\partial_{\mu}U, U^{-1}\partial_{\nu}U]^{2}\right] + \cdots$
This is the Skyrme model ! $\left(f_{\pi}^{2} = \frac{4\kappa}{\pi}M_{\mathsf{KK}}^{2}, e_{S}^{-2} \simeq 2.51 \cdot \kappa\right)$

Skyrme proposed [Skyrme 1961]

Baryon \simeq Soliton in Skyrme mode(Skyrmion)

baryon # winding # $N_B = \frac{1}{24\pi^2} \int \text{Tr}(UdU^{-1})^3$

Let us generalize this idea to our 5 dim description.

• Summary of the rest of the talk

- We propose a new way to analyze baryons that extends Skyrme's old idea including contributions from vector mesons.
- Baryons are described as (4 dim) instantons in the 5 dim gauge theory.
- Quantum mechanics on the instanton moduli space, gives the baryon spectrum.
- The quantitative tests are not good enough yet.
 Please be generous !

- Classical solution
 - The instanton solution for

$$K(z) = 1 + z^2$$

, 2

$$S_{\rm YM} = \kappa \int d^4 x dz \, {\rm Tr} \left(\frac{1}{2} K(z)^{-1/3} F_{\mu\nu}^2 + K(z) F_{\mu z}^2 \right)$$

$$\kappa = \frac{\lambda N_c}{216\pi^2} \qquad \qquad \lambda : \text{'t Hooft coupling} \\ \text{(assumed to be large)}$$

shrinks to zero size !

(Even though the pion effective action contains the Skyrme term !)

The BPST instanton configuration with $\rho \rightarrow 0$ is the minimum energy configuration.

The effect of the Chern-Simons term:

$$S_{\text{CS}} = \frac{N_c}{24\pi^2} \int_5 \omega_5(A) = \frac{N_c}{16\pi^2} \int d^4x dz A_0^{U(1)} \underbrace{\epsilon^{ijk} \text{Tr} F_{ij} F_{kz}}_{U(1)} + \cdots$$

- source of the U(1) charge
- point-like charge costs energy
- The size will be stabilized with a non-zero finite value.

This is the same mechanism as the stabilization of Skyrmions via ω meson. [Adkins-Nappi 1984]

• We can show $\rho_{\min} \sim \mathcal{O}(\lambda^{-1/2})$

It is convenient to rescale as

$$x^M \to \lambda^{-1/2} x^M \qquad A_M \to \lambda^{1/2} A_M \qquad (M = 1, 2, 3, z)$$

Then, we have

$$\mathcal{L}_{YM} \sim \kappa \operatorname{Tr} \left(\frac{1}{2} F_{MN}^2 + \mathcal{O}(\lambda^{-1}) \right)$$

$$\bigstar$$
YM in flat space

→ The leading order classical solution is the BPST instanton with $\rho = \rho_{min}$ and Z = 0

$$A_{M}^{\text{cl}} = -i \frac{\xi^{2}}{\xi^{2} + \rho^{2}} g \partial_{M} g^{-1}$$
$$g = \frac{(z - Z) - i(\vec{x} - \vec{X}) \cdot \vec{\tau}}{\xi} \quad \xi = \sqrt{(\vec{x} - \vec{X})^{2} - (z - Z)^{2}}$$

 ρ : size (\vec{X}, Z) : position of the instanton

3 Baryon spectrum

Consider a slowly moving (rotating) baryon configuration. Use Manton's moduli space approximation method :

Instanton moduli
$$\mathcal{M} \ni X^{\alpha} \rightarrow X^{\alpha}(t)$$

 $A_{M}(t,x) \sim A_{M}^{Cl}(x; X^{\alpha}(t))$ time
 S_{5dim} Quantum Mechanics for $X^{\alpha}(t)$
• For SU(2) one instanton,
 $\mathcal{M} \simeq \{(\vec{X}, Z, \rho)\} \times SU(2)/\mathbb{Z}_{2} \quad \mathbb{Z}_{2} : \mathbf{a} \rightarrow -\mathbf{a}$
position size $\overset{\cup}{\mathbf{a}} \leftarrow SU(2)$ orientation
• $L_{QM} = \frac{G_{\alpha\beta}}{2} \dot{X}^{\alpha} \dot{X}^{\beta} - U(X^{\alpha}) \quad U(X^{\alpha}) = 8\pi^{2}\kappa \left(1 + \lambda^{-1} \left(\frac{\rho^{2}}{6} + \frac{3^{6}\pi^{2}}{5\rho^{2}} + \frac{Z^{2}}{3}\right) + \mathcal{O}(\lambda^{-2})\right)$
Note We include (ρ, Z) since they are light
compared to the other massive modes.

Solving the Schrodinger equation for this Quantum mechanics,

we obtain the baryon spectrum

Generalization of Adkins-Nappi-Witten[Adkins-Nappi-Witten1983] including vector mesons and ρ , Z modes

Results

• Only I = J states appear. (Just as in the ANW) \wedge \wedge isospin spin

Parity odd states appear. (Unlike in the ANW!)

parity = $(-1)^{n_z}$ n_z : excitation of the Z mode

Mass spectrum

$$M \simeq M_0 + \left(\sqrt{\frac{(l+1)^2}{6} + \frac{2}{15}N_c^2} + \sqrt{\frac{2}{3}}(n_\rho + n_z)\right) M_{\mathsf{KK}}$$

 $l = 2I = 2J = 1, 3, 5, \dots$ $n_{\rho} = 0, 1, 2, \dots$ $n_z = 0, 1, 2, \dots$

• numerical values (just for illustration !)

$$M \simeq M_0 + \left(\sqrt{\frac{(l+1)^2}{6} + \frac{2}{15}N_c^2} + \sqrt{\frac{2}{3}}(n_\rho + n_z)\right) M_{\text{KK}}$$

$$l = 2I = 2J = 1, 3, 5, \cdots \quad n_\rho = 0, 1, 2, \cdots \quad n_z = 0, 1, 2, \cdots \quad \text{parity} = (-1)^{n_z}$$

• If we choose $M_{KK} \simeq 500 \text{ MeV}$ and use nucleon mass($\simeq 940 \text{ MeV}$) to fix the consta M_0 (we only consider the mass difference), we obtain

$(n_ ho,n_z)$	(0,0)	(1,0)	(0, 1)	(1, 1)	(2,0)/(0,2)	(2,1)/(0,3)	(1,2)/(3,0)
N(l=1)	[940]+	1348+	1348-	1756^{-}	$1756^+, 1756^+$	2164 ⁻ , 2164 ⁻	2164+,2164+
$\Delta (l = 3)$	1240+	1648+	1648^{-}	2056-	2056+,2056+	2464 ⁻ ,2464 ⁻	2464+,2464+

States appeared in the Skyrme model $(\pm : parity)$

• I = J states from Particle Data Group look like....

$(n_ ho,n_z)$	(0,0)	(1,0)	(0, 1)	(1, 1)	(2,0)/(0,2)	(2,1)/(0,3)	(1,2)/(3,0)
N(l=1)	940+	1440+	1535^{-}	1655^{-}	$1710^+, ?$	2090*, ?	$2100^+_*,?$
$\Delta (l = 3)$	1232+	1600+	1700^{-}	1940_{*}^{-}	1920+, ?	?, ?	?, ?

(? : not found, * : evidence of existence is poor)

Comments

The predicted baryon spectrum looks nice,

but there are a lot of reasons that you should NOT trust these values.

- $1/\lambda$ expansion may not work well.
- Higher derivative terms are neglected.
- $N_c = 3$ is not large enough especially for $l \ge 3$, $n_{\rho} + n_z \ge 3$
- The model deviates from real QCD at high energ $\sim M_{\rm KK}$
- $M_{KK} \simeq 950 \text{ MeV}$ is the value consistent with ρ meson mass
 - Need more investigation for the quantitative tests.

• Comments (large *N_c* behavior)

For $N_c \gg l$, the mass formula becomes

$$M \simeq \widetilde{M}_0 + \frac{1}{4} \sqrt{\frac{5}{6}} \frac{l(l+2)}{N_c} M_{\mathsf{K}\mathsf{K}} + \sqrt{\frac{2}{3}} (n_\rho + n_z) M_{\mathsf{K}\mathsf{K}}$$
$$(\widetilde{M}_0 \sim \mathcal{O}(N_c))$$

The N_c dependence is consistent [Witten1979] with that known in large N_c QCD. [Adkins-Nappi-Witten1983]

Cf) The mass formula in Adkins-Nappi-Witten $M = M_0 + \frac{l(l+2)}{8\lambda}$ ($M_0 \sim O(N_c), \ \lambda \sim O(N_c)$)

4 Outlook

- Baryons are described as (4 dim) instantons in a 5 dim gauge theory.
- We proposed a new way to analyze baryons that extends Skyrme's old idea including contributions from vector mesons.
- There are a lot more to do to improve the analysis.
 (solve EOM numerically, include higher derivative terms etc.
- It would be interesting to investigate other static properties of baryons. (charge radii, magnetic moments etc.)[See Hong-Rho-Yee-Yi 2007]