Anomalies and marginal deformations in brane tilings

@Komaba2007 (2007/2/11(Sun))

The Univ. of Tokyo (Hongo)
Yosuke Imamura

Based on
U(1) anomaly cancellation
Exactly marginal deformations

N=1 quiver gauge theories

Gauge groups
Matter contents
Superpotential

This talk

D5-NS5 system

Structure of the system

Brane tilings

Hanany et al., 2005

Toric data

Toric Calabi-Yau
Brane configuration

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>N D5-branes</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS5-branes</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This configuration preserves N=1 SUSY

89-rotation = R-symmetry

Slant NS5s are also used

projection to 46 \rightarrow (p,q) web

projection to 57 \rightarrow **brane tiling**

(Feng et al. hep-th/0511287)
Brane tiling

Boundaries of NS5 divide the torus into faces

Due to the NS5 charge conservation, some of faces become \((N,+1)\) or \((N,-1)\) branes

SU(N) can live only on \((N,0)\)

Open strings stretched between two \((N,0)\) faces

bi-fundamental chiral multiplets

\((p,q)\) brane = bound state of \(p\) D5 and \(q\) NS5
Bipartite graph

Brane tilings are usually represented as Bipartite Graphs drawn on tori.

A bipartite graph is a graph consisting of two kinds of vertices and edges connecting different kinds of vertices.
The superpotential can be read off from a brane tiling.

The superpotential

\[W = \sum_{k} \pm h_k \mathcal{O}_k, \quad \mathcal{O}_k = \text{tr} \prod_{I \in k} \Phi_I \]

\(k \) : label of \((N, \pm 1)\) faces \\
\(I \) : label of intersection (chiral multiplets)

\(I \in k \) means \(I \) is a corner of \(k \)

If \(h_k = 1 \), the moduli space is toric CY

(hep-th/0601063 S.Franco and D.Vegh)
In this talk, I discuss anomalies and marginal deformations in gauge theories.

Three kinds of anomalies

<table>
<thead>
<tr>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>gauge anomalies</td>
<td>SU(N^3)</td>
</tr>
<tr>
<td>global U(1) anomalies</td>
<td>U(1)SU(N^2)</td>
</tr>
<tr>
<td>’t Hooft anomalies</td>
<td>U(1^3)</td>
</tr>
</tbody>
</table>

All these anomalies (or anomaly cancellation conditions) should be reproduced by brane configuration.

In what follows I focus on the anomaly free global U(1) symmetries

Global symmetries of $N=1$ quiver SQCD

- $U(1)_R \times 1$ R-symmetry
 - 89-rotation
 - supercharge

- $U(1)_M \times 2$ Mesonic symmetries
 - B-field $B_{\mu 5}$, $B_{\mu 7}$
 - $\text{tr}(\Phi_1 \Phi_2 \Phi_3)$

- $U(1)_B \times (d-3)$ Baryonic symmetries
 - $\text{det}(\Phi_1)$
 - $U(1)$ gauge fields on branes

d: the number of NS5-branes.

We here discuss only the baryonic symmetries.
Anomaly free $U(1)_B$

Let us consider baryonic $U(1)$ symmetries

They are realized as gauge symmetries on branes

A $U(1)_B$ is specified by giving charge assignment Q_I

Charge assignment Q_I
Anomaly cancellation

Certain constraints

What in the brane configuration correspond to these constraints?
Charge assignment and gauge fields on branes

Gauge fields on branes

\[A^a_\mu (x^\mu, y^i) = S_a(y^i)V_\mu(x^\mu) \]

\(a: \) label of faces

\(A^a_\mu: \) gauge fields on branes

\(V_\mu: \) gauge field in 4-dim

Masslessness \(\rightarrow \) \(S_a \) is constant on the face \(a \)

The charges are given as differences of \(S_a \)

\[Q = S_a - S_b \]

This guarantees that the symmetry does not rotate mesonic operators. Especially the superpotential is invariant under the U(1).

\(\rightarrow \) This U(1) is a classical symmetry.

Anomaly cancellation \(\rightarrow \) Constraints on \(S_a \)
Boundary condition

\[(A^1_\mu \pm A^2_\mu \pm A^3_\mu)\big|_{\text{junc}} = 0\]

is imposed on gauge fields on branes

\[\rightarrow S_1 \pm S_2 \pm S_3 = 0\]

This is equivalent to the anomaly cancellation condition

\[A^1_\mu = S_1 V_\mu\]
\[A^2_\mu = S_2 V_\mu\]
\[A^3_\mu = S_3 V_\mu\]

\[U(1)_B\] anomaly cancellation conditions
= boundary condition imposed on gauge fields on branes
+ constantness of gauge fields on each face.

We refer to number assignments \(S_A\) to faces satisfying the above condition as baryonic charges.

It will turn out later that baryonic charges are useful in the analysis of exactly marginal deformations.
Exactly marginal deformations

(hep-th/0702049 Y.I., H.Isono, K.Kimura, M.Yamazaki)

In the low energy limit, the gauge theories flow into IR fixed points.

Conformal manifold \(\subset \) parameter space

\[\beta_a = \beta_k = 0 \]

\[(g_a, h_k) \]

of conditions = # of couplings

\(g_a \): gauge couplings
\(h_k \): superpotential couplings

Generically we have isolated IR fixed points in non-supersymmetric gauge theories

This is, however, not the case in supersymmetric gauge theories.
The β-functions are given with the anomalous dimensions γ_I

NSVZ exact β functions for gauge couplings g_a

$$\beta_a \propto 3 - \frac{1}{2} \sum_{I \in a} (1 - \gamma_I)$$

β functions for superpotential couplings h_k

$$\beta_k \propto -3 + \sum_{I \in k} \left(1 + \frac{1}{2} \gamma_I \right)$$

There are identically vanishing $d-1$ linear combinations

$$\beta[S_A] \equiv \sum_a S_a \beta_a + \sum_k S_k \beta_k = 0$$

(S_A are the baryonic charges)

These $d-1$ relations effectively decreases the number of conditions.

$# \text{ of conditions} = # \text{ of couplings} - (d-1)$

The dimension of the conformal manifold is $d-1$.
The conformal submanifold is parameterized by RG invariant parameters associated with vanishing linear combinations $\beta[S_A]$

\[\begin{align*}
\text{d} - 1 \text{ deformations} & \quad \begin{cases}
1 \text{ diagonal gauge coupling} \\
1 \beta\text{-like deformation} \\
d - 3 \text{ deformations}
\end{cases}
\end{align*} \]

What are the corresponding deformations in the brane system?
Deformations of the brane system

For the analysis of deformations, you should take account of equations of motion.

NS5-branes \rightarrow holomorphic curve in 4567
D5-branes \rightarrow discs with boundaries on the NS5.

(I still use the *incorrect* figure for the simplicity)

You can move these

We have d parameters
2 of them are redundant
1 constraint from EOM

Only $d-3$ degrees of freedom
We also have $d-3$ degrees of freedom associated with the Wilson lines on the NS5-branes.

$d-3$ complex parameters for brane configuration.

We also have background supergravity fields.

More detailed analysis shows the following relations

\[
\begin{align*}
\text{diagonal gauge coupling} & \sim e^{-\phi} + iC_{57} \\
\beta\text{-like deformation} & \sim \chi + iB_{57} \\
\text{The other } d-3 & \sim \text{deformation of branes}
\end{align*}
\]
Summary

Gauge theory

\[\text{U}(1)_B \text{ anomaly cancellation} \]

\[\text{Exactly marginal deformations} \]

Brane configuration

\[\text{Boundary condition of vector fields} \]

\[\text{Deformation of branes \\ \\ \\ \\ & background fields} \]
open questions

How to get superconformal $U(1)_R$?

How to realize the a-maximization ?

Solitons and BPS operators

Breaking conformal sym. and cascading

SUSY breaking

Relation to the dimer model

...