Anomalies and marginal deformations in brane tilings

@Komaba2007 (2007/2/11(Sun))

The Univ. of Tokyo (Hongo) Yosuke Imamura

Based on Y.I., JHEP06(2006)011 (hep-th/0605097) Y.I., JHEP12(2006)041 (hep-th/0609163) Y.I., H. Isono, K. Kimura, M. Yamazaki, hep-th/0702049

Brane tiling

(p,q) brane = bound state of p D5 and q NS5

Boundaries of NS5 divide the torus into faces

Due to the NS5 charge conservation, some of faces become (N,+1) or (N,-1) branes

SU(N) can live only on (N,0)

Open strings stretched between two (N,0) faces

bi-fundamental chiral multiplets

Bipartite graph

Brane tilings are usually represented as Bipartite Graphs drawn on tori

A bipartite graph is a graph consisting of two kinds of vertices and edges connecting different kinds of vertices.

Superpotential

The superpotential can be read off from a brane tiling.

The superpotential

$$W = \sum_{k} \pm h_k \mathcal{O}_k, \quad \mathcal{O}_k = \operatorname{tr} \prod_{I \in k} \Phi_I$$

k : label of (N,±1) faces I : label of intersection (chiral multiplets)

 $I \in k$ means I is a corner of k

If h_k=1, the moduli space is toric CY (hep-th/0601063 S.Franco and D.Vegh) In this talk, I discuss anomalies and marginal deformations in gauge theories.

Three kinds of anomalies

gauge anomalies SU(N)³

global U(1) anomalies U(1)SU(N)²

't Hooft anomalies U(1)³

All these anomalies (or anomaly cancellation conditions) should be reproduced by brane configuration.

In what follows I focus on the anomaly free global U(1) symmetries

Y.I., JHEP06(2006)011 (hep-th/0605097) Y.I., JHEP12(2006)041 (hep-th/0609163)

Global symmetries of N=1 quiver SQCD

We here discuss only the baryonic symmetries.

Anomaly free U(1)_B

What in the brane configuration correspond to these constraints?

Charge assignment and gauge fields on branes

Gauge fields on branes

$$A^{a}_{\mu}(x^{\mu}, y^{i}) = S_{a}(y^{i})V_{\mu}(x^{\mu})$$

a: label of faces A_{μ}^{a} : gauge fields on branes V_{μ} : gauge field in 4-dim

Masslessness \rightarrow S_a is constant on the face a

The charges are given as differences of S_a

$$Q = S_a - S_b$$

This guarantees that the symmetry does not rotate mesonic operators. Especially the superpotential is invariant under the U(1).

 \longrightarrow This U(1) is a classical symmetry.

Anomaly cancellation \longrightarrow Constraints on S_a

Boundary condition

+ constantness of gauge fields on each face.

We refer to number assignments S_A to faces satisfying the above condition as baryonic charges.

It will turn out later that baryonic charges are useful in the analysis Of exactly marginal deformations.

Exactly marginal deformations

(hep-th/0702049 Y.I., H.Isono, K.Kimura, M.Yamazaki)

In the low energy limit, the gauge theories flow into IR fixed points.

Conformal manifold	⊂ p	arameter space
$\beta_a = \beta_k = 0$		$({g}_a, h_k)$
# of conditions = # of couplings		g _a : gauge couplings

h_k: superpotential couplings

Generically we have isolated IR fixed points in non-supersymmetric gauge theories

This is, however, not the case in supersymmetric gauge theories.

The β -functions are given with the anomalous dimensions γ_1

NSVZ exact β functions for gauge couplings g_a

$$\beta_a \propto 3 - \frac{1}{2} \sum_{I \in a} (1 - \gamma_I)$$

 β functions for superpotential couplings h_k

$$\beta_k \propto -3 + \sum_{I \in k} \left(1 + \frac{1}{2} \gamma_I \right)$$

There are identically vanishing d-1 linear combinations

$$\beta[S_A] \equiv \sum_a S_a \beta_a + \sum_k S_k \beta_k = 0 \qquad \begin{array}{l} \text{a: (N,0)} \\ \text{k: (N,\pm1)} \end{array}$$

 $(S_A are the baryonic charges)$

a: (N,0) faces <: (N,±1) faces

These d-1 relations effectively decreases the number of conditions.

of conditions = # of couplings
$$- (d-1)$$

The dimension of the conformal manifold is d-1.

13

The conformal submanifold is parameterized by RG invariant parameters associated with vanishing linear combinations $\beta[S_A]$

d-1 deformations
$$\begin{cases} 1 \text{ diagonal gauge coupling} \\ 1 \beta \text{-like deformation} \\ d-3 \text{ deformations} \end{cases}$$

What are the corresponding deformations in the brane system?

Deformations of the brane system

For the analysis of deformations, you should take account of equations of motion.

We also have d-3 degrees of freedom associated with the Wilson lines on the NS5-branes.

→ d-3 complex parameters for brane configuration.

We also have background supergravity fields.

More detailed analysis shows the following relations

Summary Brane configuration Gauge theory Brane configuration U(1)_B anomaly cancellation Boundary condition of vector fields Exactly marginal deformations Deformation of branes & background fields

open questions

- How to get superconformal $U(1)_R$?
- How to realize the a-maximization?
- Solitons and BPS operators
- Breaking conformal sym. and cascading
- SUSY breaking
- Relation to the dimer model

. . . .