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When a CY manifold is non-compact or singular, a CFT de-
scribing string propagation on such a manifold has continu-
ous as well as discrete representations. These CFT’s have a



central charge above the threshold and are of non-minimal
type. Let us call them generically as Liouville type theories.
Since continuous and discrete representations mix under mod-
ular transformation, representations of Liouville theories do
not have good modular behaviors. Then it is non-trivial to
construct suitable modular invariants describing the geome-
try of non-compact CY such as elliptic genera. This work pro-
poses a way of constructing elliptic genera for non-compact
CY manifolds like ALE spaces and is an attempt at generaliza-
tion of CY/LG corresondence for non-comact CY manifolds.

It turns out that consistency of our approach hinges on some



non-trivial identities of theta functions which have recently

been proved mathematically by D.Zagier.

We start from the case of bosonic Liouville theory.
& N = 0 Liouville Theory
In the case of bosonic Liouville the stress tensor is given by

Q
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where Q is the background charge. Central charge is given
by
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There exist two types of representations in bosonic Liouville
theory:
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Let us infroduce ZZ and FZZT branes and identify the character

functions as the inner product
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where H(¢) = (Lo + Lg)/2 is the closed string Hamiltonian.
Thus we identify LHS as the open and RHS as closed string

channel. We then find

Spectrum:

open closed
continous rep. continous rep
identity rep. |

There is no identity representation in closed string channel.

This is consistent with the presence of mass gap and decou-



pling of gravity
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If we use Ishibashi states |p)) with momentum p
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boundary states are expanded as
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Solving these relations one finds the boundary wave-functions
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In order to apply to the string theory we consider supersym-
metric version of Liouville theory
& N = 2 Liouville Theory



There are two bosons (one of them is coupled to background
charge and the other is a compact boson) and two free fermions
in the system. It is known that A/ = 2 Liouville theory is T-dual
to SL(2; R)/U (1) supercoset theory which describes 2 dim.
black hole. In general N/ = 2 Liouville geometrically is inter-
preted as describing the radial direction of a complex cone.

For the sake of simplicity consider the case with central charge
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which is T-dual to 2-dim black hole with an asymptotic radius
of the cigar v 2N.
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Unitary representations of A/ = 2 algebra with é = 1 + ~

( identity rep. j=0 vacuum
: .1 p
continousrep. j = 5 + zé non-BPS states
\
discretereps. 7 = g BPS states, chiral primaries
\ 1<s< N

These representations are in one to one correspondence with



those of SL(2; R)/U (1) coset theory with level k = N.

We consider the sum over spectral flows of each N/ = 2 rep-

resentation in order to apply for string theory.
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and we obtain characters

1. Identity representations :

Xid(r;T); r E€ZN,

2. Continuous representations :

Xcont(pv my; 7')3 p>0, meZan,
h =p*/2+ (m?+1)/4N,Q = m/N

3. Discrete representations :
Xdis($,m57); T €E€ZN,1<s<N,Q=s/N



S franformations of these characters has the pattern

(continous rep) S, (continous rep)

(discrete rep) S, (continous rep) + (discrete rep)

Such a pattern was first observed in A/ = 4 rep theory.

1. There are no identity reps in the RHS of above formulas.

2. It is still possible to show that S? = C.



We have three types of boundary states of A/ = 2 theory
corresponding to each representation. Their boundary wave
functions are again given by the elements of the modular S
matrix. We can compare our expressions with known results
of SL(2; R)/U (1) theory obtained by semi-classical method
using DBI action. We reproduce wave functions of D0, D1, D2
branes of 2d black hole (Ribault-Schomerus). Thus the repre-
sentation theory seems to work fairly well. However, the char-
acter formula themselves do not have good modular prop-
erties and it is non-trivial to construct conformal blocks with

good modular behaviors.



& Geometry of A/ = 2 Liouville fields

We consider models of the following type:
N = 2 Liouville theory ® N = 2 minimal model

LN ® My,
If we choose
N =Fk+ 2
the central charge becomes
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and the theory describes (complex) 2 dimensional non-compact
CY manifolds, i.e. ALE spaces. At N = 1 (without minima

model), we have ¢ = 3 and the space-time of a conifold.

We may also consider the tensor products of Liouville theories
and minimal models. These describe other various singular

geometries like An_1 spaces fibered on Pl etc.

Elliptic genus:
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Z(t;z=0) = x, Euler number
Z(t;z=1/2) = o + ..., signature
Z(t;z = (r+1)/2) = Aqg~/* + ..., A genus

Elliptic genus is an invariant under smooth variation of pa-
rameters of the theory and is useful, for instance, in counting
the number of BPS states. We compute the elliptic genus of
a non-compact CY manifolds by pairing the Liouville theory
with A/ = 2 minimal models.



CY/LG correspondence
We first recall the results of CY/LG correspondence. We con-
sider a LG theory with a superpotential

W = g(X*T2 4 v2 4 72

which in the IR acquires scale invariance and reproduces the
N = 2 minimal theory with é = 1 — .

In the minimal theory the contribution to elliptic genus comes
from the Ramond ground states

N -2

R
Zminimal(Ty %) = Z Ch£,£_|_1(7'; z)
£=0



On the other hand as the coupling parameter is turned off
g — 0, LG theory theory becomes a free theory of chiral field
with U (1) r charge = 1/N. So that there is a free boson of
charge 1/N and free fermion with charge 1/N — 1. Com-
bining these contributions one obtains
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and in fact these two agree with each other
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Witten



We want to try a similar construction in Liouville sector. Ra-

mond ground states are given by
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Here KC, denotes the Appell function
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Unlike the theta functions of minimal model, Appell function
in Liouville theory does not have a good modular fransforma-

fion law.

When we couple minimal and Liouville theory to compute el-

liptic genera of A ny_ 1 spaces, we may use the orbifoldization



procedure and we find
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In the special case of N = 2 we have (y = ¢27™'?)
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(This coincides with a massless character of A/ = 4 algebra.)

Unfortunately these formulas do not have well-behaved mod-
ular properties and we must make a suitable modification. El-
liptic genus is associated with a CFT defined on the torus and
hence it must be invariant under SL(2; Z) or under one of its
subgroups. Since we are dealing with SCFT, it seems natural



to demand invariance under the subgroup I'(2) which leave
fixed the spin structures.

I‘(2):{<g Z) € SL(2;Z),a=d=1,b=c=0 modZ}

K3 Elliptic Genus

A hint comes from the study of elliptic genus of K3 surface

Z53(T,2) = 8 (HZiz;j))z | (9;4(17(-;—?))2 " (9429;;;§)>2

This formua can be easily derived by orbifold calculation on
T4 /75 or we may use LG theory and LG/CY correspondence.



We can check Zg3(z = 0) = 24, Zg3(z = 1/2) = 16 +
s Zi3(z =17/2) = —2g /44 ...
In this case we can use the A/ = 4 representation theory. At

¢ = 2 N = 4 theory contains SU(2) symmetry at level 1.
Unitary representations in R sector are
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massless rep. : chi!(I = 0;7,z2), chl(I =1/2;1,2)

massive rep. : ch*(h;T,2) = ¢
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Under spectral flow



R:T=0 < NS:I1=1/2
R:T=1/2<= NS:1=0

Decomposition formula
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where
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Rewrite K3 genus as
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We note that
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where integer coefficients a,, are all positive. Thus we further



rewrite
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We see the theory contains

1 I =0 rep.
20 I =1/2 reps.

oo of massivereps. (h =1,2,---)

Seiberg

I = 0 rep. corresponds to the gravity multipletand I = 1/2
rep. to matter multiplets (vector in llA, tensor in lIB) in SUGRA
description. By throwing away the gravity multiplet we can

decompactify K3 into a sum of ALE spaces; it is known K3



may be decomposed into a sum of 16 A; spaces. Decom-

pactification corresponds to dropping I = 0 massless repre-

sentation or h = 0 massive representation. This suggests
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Thus we propose
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where again the expansion
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has all positive integer coefficients b,,.

We also propose
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Above construction of Z 4, suggests that instead of using the

irreducible character chOR we should use a combination with



massive reps.
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which has a good modular property. We call this combination

as the topological part of the massless representation and

consider it as a conformal block in non-compact CFT.

Let us now go back to the orbifold formula for Z 47 g and re-

place the Appell function by its topological part. We first use



the decomposition of level kK N=4 massless character
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Then use its relation to Appell function
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Then the orbifold formula predicts
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Strikingly, RHS of this formula agrees exactly with the pro-

posed expression for Z 4 .
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Actuadlly this is a special case of non-trivial identities of theta

functions
2 N—1

2
1 E %e%mZ(_l)aerHl(T? N Za,b )01(7s Ar2a,p)01(75 2)
2\ ! 0+ (T: L 3

a,b 1(7‘, Nza,b)

(97:(7', %%,b)) 2(N—1)
X
0;(7)

i (B9




Identities for : = 2, 3, 4 fransform into each other under
SL(2;7)/T(2).

It is easy to show these for N = 2 by addition formula of
theta functions and we have checked their validity by Maple

for lower values of V.

Recently an elegant mathematical proof of these identities
for general N has been found by D.Zagier using the method

of residue integrals.



& Summary

When a CY manifold is nhon-compact, string theory is de-
scribed by a CFT possessing continuous as well as discrete
representations. Characters of representations of such CFT
fransform in a peculiar manner under S transformation

discrete — Zdiscrete+ / continuous
S
continuous — / continuous
S

Mathematical nature of such transformation is currently not
well understood. We found an empirical rule in construct-
ing conformal blocks which have good modular behavior



and obtained elliptic genera of some non-compact CY man-
ifolds.

We have yet to figure out a simple LG interpretation of the
Liouville part of elliptic genera
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