Field Theory of Anisotropic Quantum Hall Gas
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1 Introduction

1.1 Thomas-Fermi model and anomaly in one dimensional
compressible gas

The electrons are in the smooth electrostatic potential d¢(x).
The density vs Fermi momentum,

Bltx) = j{m fhjﬂ-ﬁ
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The constant chemical potential,
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Equation for the potential and Thomas-Fermi screening,
o
%bd}[mj = —4reN9n —n")
= &rr'b9(z), (3)
hu
bor = ()™

1eNO)



1.2  Schwinger model: one dimensional axial anomaly and
ICDW

E]p F_ru-' = HJ'_F:
a.l-'-jﬁﬁ = ’}_:[-EHHFHU (4)
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1+1 dimensional axial anomaly is equivalent to Thomas
Fermi screening.- - - - - - Sakita-Z. B. Su

1.3 incompressible gas (liquid) vs compressible gas of finite
quantum Hall system

() incompressible liquid
— “no-screening” “droplet with sharpe edge” Iso "kqnﬁﬂf; r-g{ffq P
() compressible Hall gas . iaiesien
— “sereening “ “spreading gas 7 7
() anisotropic quantum Hall gas{incompresible x compress-
ible)
— “screening or no-screening? 7 7

1.4 Fine structure constant and quantum Hall effect

The fine structure constant o ; the combination of e, ¢, h,
and the dielectric constant of vacuum, ;.

o = e* [2eq0h. (6)
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The electron's g — 2 :

Theory (Kinoshita)

g—2 = a/2r - 0.328478965(a/m)* + 1.17562(56)(a/r)?
+(=)1.472(152)(a/7)* + 4.46 %1072, (7)

Experiment (Van Dyck et. al.)
g—2=1159652188.4{4.3) x 10712, (&)
Comparison

a;l, = 137.03599976(50)(3.Tppb) (9)

Quantum Hall effect
agyp = 137.0360037(33)(0.024ppm ). (10}
Quantum Hall effects{ Klitzing, Tsui et al): believed as,

iy = {le,fh}n
0.y = (°[h)g/p, (11)

Ore = 0

, around » = n, or qfp, where v = p/py. Here p is the
electron’s density and py is the degeneracy of the Landan
levels per unit area.



2 qguantum Hall dynamics on von Neumann lattice

2.1 von Neumann lattice representation

One body Hamiltonian: Hy = (p 4+ eA)*/2m, |rotA| = B,
The classical solutions: The center (X, Y ) and the velocity,
v,

r=tyfw+ X y=—-v.fw. +Y,u, = eB/m (12)

. Commutation relation (non-commutative center coordi-
nates),

[, v:] = [ X, v =Y, ve] = [¥. 0] =0,
[, 4] = [vs, "':,r]:"r‘-"‘rir +[X,Y] =0,
[X,Y] = vz, 1) /w.’ = —ih/eB. (13)

The von Neumann lattice coherent state:

|t ) = explim{m +n+ mn) + rrlmt.—l';'—:" — A :'t;'"‘]”u},

(14)
where
- ‘Eﬂﬁ
~ N eB’
Tmn = @(Mu; + nwy ),
Im(wiw,) = 1, (15)
A= ﬁ{_Tvi +iY),[4,AT] =1,
i
ma=4
This complete set satisties
(ot st [ o) = XpliT{M 4+ n 4+ mn) — 11';"2[:*“”12}
a

(16)
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T, T

(aplat) = +(p) X(2r)8(p— p' — 2#N)  (17)
N

y Ney Ny = 2, and the fundamental region of p is defined
as, |p:| € m, |py| € 7. The normalization constant

¥(p) = B8(p)* B3(p), (18)
5(p) = (2Imr )t i, (P2 Py,

where

Il
it 4

'.a,'y.
t(z|T) = theta function,
A(p + 2xN) = PN g(p), (19)

¢(p,N) = n(N; + Ny) = Nyp..

s
]

The relative variables, (£, 1),
E=r—X=vlu.ng=y-Y =—uv.fuw., (20)

commute with the center variables, (X,Y). Eigenstates of
Hy,
Hylfi) = E-':If:} (21)
E = ﬂﬁu +3),
The direct product,

t.p) = |fi) @ lap)/B(p) (22)
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2.2 field theory
The Hamiltonian of the quantum Hall system Hy + Hiw
Ho= jd‘erﬁl't{}i}ﬂuﬁ’{]{}-.

Him = [ dko(k)V (k)p(-k)/2.

plk) = [ d*ze® =yt (x, t)u(x,1) (23)
and V(k) 1s the Conlomb potential. Electron ficld,
d2p
¢X) = | oy Zh:[m{xif p). (24)

Operators satisfy anti-commutation relations,
{bi(p). b (p')} = bip 3_(27)*8(p — p’ — 2xN)e™P'N) | (25)
N

and satisfy a torus boundary condition with a phase factor,
dip, N, n the momentum space. The free Hamiltoman
and density operators,

- =t |
o 2R Wﬂafutplba{p}n (26)
- &p ; 3
) = 3, {2 301 ()b (p + ak) fr (K)expl ﬂk;f3ﬂy+u.i..yj].
i) =2 [,7 e Tox ,gbnmaf (b + ak)(fil5{v, e < hm} 1)
EKP[EHL,{EFF + ak,)],

fu(k) = (fife™ "5 £)
here, k; = Wiik; with the matrix W defined by w,; and w,.
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2.3 Ward-Takahashi identity and the Hall conductance

With the transformed electron operators,
2. Uw(p)bilipl,
Up(p) = {frlﬁ"m’f”“"”“—‘I"M’Lfr'}nﬁi = W;'p;,(27)
the density operators becomes diagonal form,
dp TP !
o(k)= [ ot 5 H(R)h(p +ak), (28)
[p(k), bi(p)]8(t — ') = —by(p — K)é(t — ¢'),
The vertex part [, and the propagator, s,

: . 957p)
Tulp.p) =1, e (29)

where t¢" is defined through (g0, gz, ag,) = thg". The
current correlation function

e d) = [ dede' e T (@) ()
= (27)°8(q — )" (q) + 7l (0, ¢ ). (30)
The Hall conductance |

2
4
Oey = EF‘*””ﬂpﬂﬂw[q}quu, (31)
e?
= ?-w'w
poo 1 3 =171 & o=l 4 &
Nu = 305 Jagess @ Pewntt (357 (2)S(p)0, 5" (p)S(p)

8,57 (p)5(p)) , (32)
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Ny = a winding number of the propagator, S (1), and agrees
with an integer if the integrand is single-valued and has no
siugularity. This is satisfied in the integer Hall effect and
in periodic potential system.

2.4 wvalue of topological winding number and integer quan-
tum Hall effect

Free theory

The winding number of the propagator is stable under
small changes of the systems,but depends upon the propa-
gator and the position of Fermi energy. The value for the
free propagator is computed as a fauction of the Fermi en-
ergy. The value stays at an integer in finite energy region
and has step-like behavier as a whole, This oceurs because
one particle energy takes discrete values. F;. and there is
no state between these energy values in free theory.

Disorders

The plateau appears in the system of disorders because
the topological invariant is stable under small changes of
the system. By treating interactions perturbatively, the
Hall conductance has plateaus at the exactly quantized val-
nes also in the system of interactions as far as the ground
state is in the same phase.

Hall gas

In the system of Hall gas where one particle energy is
not degenerate but has a momentum dependence,the Hall
conductance is unguantized. The value changes with Fermi
energy.



3 Anisotropic Hall gas state(stripe)
3.1 Broken symmetry of anisotropic quantum Hall gas (stripe)

Symmetry: the translation in y-direction QQx, the transla-
tion in x-direction Qy .the rotation @, and the total charge
@ satisfy

Q. H] = [Qx.H] = [Qv,H] = [Qs, H] =0,
[@x,Qv] = Q.

[Q1.Qx] =iQy,[Q.Qy] = —Ux, (33)
Qx.Q] = [Qv.Q] = Q). Q] =0.

The total charges are obtained from Noether current.
The commutation relations between Qx and Qy does
not allow |

Rx|0) =0,Qy|0) =0 (34)
, but

(Qx +1Qy)|0) =0, (35)

Qx|0) = ¢|0), Qv |0) # 0 (36)

is OK.(Laughlin ,Stripe)

In a strong magnetic field, intra Landau levels are most
important. The interaction Hamiltonian ,
Hint = [ d*kp(k)v(k)p(—k)/2, (37)
Symmetry:

bi(p) — bip + K), p(k) — e 3555 (k). (38)
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Quantum Hall gas — a momentum dependent one particle
energy with minimaly broken K symmetry.

':'!."I t.P!hI{ F" ]'} - ‘lj{p - P‘ :I'HLDJI * ”‘T]Hli"'” oy I-"y]'- (39)

The mean field Hamiltonian in the momentum space,

2p
Ho = fo apa®H(e(p) + Ei(0),  (40)

élp) = kineticenergy.

ol 1) 15 a chemical potential. the self-consistency condition
at ¥ in l-th Landan level,

- .

BZ {E }2

v = [, oL GyEtle(v) — (0] (41)

€(p) = — vgr(p’ — p)8lpolv) — e(p')],

Solution with a p, dependent one particle energy. Density
and current density in real space become also asymmetric.
The phase factor in the charge density is due to com-
mutation relation between the guiding center coordinates,
X and Y. It leads the density profile of the present mean
field in coordinate space to be uniform in y-direction and
is periodic in r-direction, hence this state agrees with uni-
directional charge density wave of Koulakov,Fogler.and
Shklovskii and of Moessner and Chalker. From the
shape of Fermi surface, this is like the integer quantum
Hall state in p, direction ,and conductance vanishes,

10



3.2 Symmetry breaking and Nambu-Goldstone zero-mode

In this section we set a = 1. @y and @}, are broken spon-
taneously. Goldstone theorem in non-commutataive co-
ordinates (A, Y ) and spectrum of Nambu-Goldstone zero
mode.

Hiﬁ} _— El:l”}!
Eﬁﬂq"""rr'l'r:ll'”} . J:E?n:{l:l':‘_“l.lrr.ﬂr]lrl}I' |:;'_|:'2‘}

12T Qy In} = iy |n),
Q|n) = N,|n) {43)

The expectation value of the algebra in the coordinate
space,

%E&.U”{r.f]} = (0][Qyi°(x, )10} = [ dr'{O|[i} (', '), j°(x, 1)]|0).
(44)

The left-hand side does not depend on ¢, hence the energy

gap, AEy;(q) vanishes in the small g limit. Thus the ex-

istence of gapless excitation mode is proved.

Spectrum of Nambu-Goldstone mode by single mode ap-
proximations., Map into I-th Landan level space,

ol = Pp()R = [ 2. Gt (PIbi(p — ak)eRE-imb),

HO =2 L = }EP.{IE}HLHP.{-EJ
u(k) = e F 7L (k2 [4m ) 2mg? k. (45)
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The density operator satisfies the comnmtation relations.

kxk

[.ﬂ-'l'kJ«. Ftlrkll j] = _2'!.551”: dr

k
[Qx.pu(k)] = —2—” palk),
o

ks
[Qr-.ﬂ-fk]] - ﬁﬂ.ka (46)

k) = p.(k)|0),

Assume that this state is ope particle state of NG mode
and computes its energy from,

(K|(H — Ey)k)
Alk) = A
| (k)

To compute the numerator we use,
(kI(H ~ Ey)lk) = (0][p.(~k), #(O)p, (k) 0)
= —(0l[H", p.(k)]p.(=K)|0), (48)
Reflection symmetry,
(O, (k)p.(~)[0) = (0], (k). (k)[0),

(0lpu(k)H p.(—k)|0) = (Olpe(—k)H" p,(k)[0). (49)
HO0) = Ey0).

le.(k + k'),

(47)

The spectrum.,
Alk) = [Ak] + BE} + Of k2R2 Bk, . (50)

The energy spectrum is an-isotropic and vanishes with higher
powers in the small momentum region. At k, = 0 the en-
ergy depends on fifth power of ky and at a finite k, the
energy depends linearly on the magnitude of k,.

12



3.3  Preferred orientation under external density modulation

Add small density modulation term of wave vector, K_,..

H + Hexl ]
Het = A Jfrrfzrp(rjl cosK . - I. (31)

In small A, apply perturbative expansion. The energy de-
pendes on the angle, #. For the small K, the energy
becomes minimum when the angle is Z. Thus the stripe
is alligned perpendicular to the external modulation. This

result is understandable from the shape of Fermi surface,

All the one particle states are filled in the p, direction
and Landau level energy gap. Hence the many body state
is hard and does not get any perturbative energy if the ex-
ternal perturbation is in the x-direction.

From the energies of the both states we obtain phase dia-

gram as a function of several parameters. In small g.orthogonal

phase in which both direction are orthogonal is realized
and in large g parallel phase in which both directions are
parallel is realized.

3.4 Hall conductance

From the propagator in the current basis,
Sit (p) = Un(p) St (p)Uus(P). (52)
e
5:{1"’{?] = by (po — (E1 + =i(p))),

14



We find ;

Ory = %{n +), (53)

at v=n+4 ',

3.5 Longitudinal resistances

The K,-invariant anisotropic Hall gas states at & = 1 +1/2
have the Fermi surface parallel to the Pz axis. The p, di-
rection — Landan level's energy gap. The system is like
the integer quantum Hall state, o, = (),

The p, direction — a bunch of parallel one-dimensional
systems. In Landaner formula, the velocity

- _ o=(py)
iy = ——=—
r.ipk
1 dp, , 3
.-ﬂ.il".l — E;_}—' ﬁt. {'\-""]:l
1 dp
An= 2%
" 2w O¢
The total current,
3
{y = evyAn = o Vis (35)
Conductance
3
Ty = - (56)

The resistance is the inverse of the conductance. Pz be-
comes finite and p,, vanishes. The easy direction is the
y direction,



4 Dielectric function, plasmon and other higher
order effects

The current-current correlation function,

™ (k,w) (37)
—i [25, dtydta(W|T 2 79 (k, t )JT(=k, ta) 2 |[Wp)e i (ta—ta)
TS
with the total time T and the total area S of 2D electron
system is given in the RPA approximation,

1:||r|r||||-{k "" = w:l‘lk'l"* +LTH” L“.:Iwrn{ :I [ﬂ}l:k '-'"-':I
+¥ r"” YW (k)mioh (K, w) Wi (k) mino (k) + -
= Y b (k,w)[l — W (k) (k,w)] L, (58)
where
(0} dp, Glo) o) —ip (n,—r, ) ”
T ( Ky & fu;zr fMB& 2 Gy m+k ot © N Ony—my, 0059)

and W (k) =Vi(k+2ma), axb=a,b, — ., xil) ig in-
dependent on n. Here, &, = E:j'“_i appears as the result

of dividing the infinite momentum integral region hy one
MBZ.

Babble and ladder diagrams are summed up.
Fomea (k@) = oo (K, ) + 3 w6 (k. w){Wa(k) = Wa (k) g (k. )

+E Ton (I, w ) {Wa(k) = W (k) ol (k, w Wi (k) = W (k) }xio0 (k) + - -

=¥ w1 - W (k) Ok, )],

13
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where we define WeT(k) = W, (k) — W, (k). Here, W, =
Vilgt + iy, $2 + #,), and Vi(@) = [ £8,vj(3)e'd .

The exchange term hetween the e.{ertmn and hole he-
comes negative. This GRPA is the same content given by
the TDHA by Cote and Macdonald. The effective interac-
tion WiT(k) becomes repulsive in the small k region anl
attractive in the large k region.

4.1 Dielectric function
In the RPA, the dielectric function

Ak w)=1 - Wo(k)} 1oop (kys ), (61)
and in the GRPA, it is defined by

__ Wa(k)&,p (ky,w)
(1 + Wolk) 7o, (kyy w))

Equ.I'I.I‘.{k‘

(62)

W) =

4.2 Plasmon

Plasmon is the excitation mode associated with the charge
fluctuation. The pole of the (G JRPA polarization function
TiGyrea 18 zero of e SRPA(K ) The plasmon appears at
the outside range of the particle-hole contimmm regime.
The difference of the plasmon behavior between k- and
ky-direction is the result of the spontaneously breaking the
magnetic translation and rotation symmetry of the striped
state. For the long wavelength limit and ¢ 1k — Ep &

Py
wp, the plasma frequency w, rises like ky/2In k, /| k|2 for

16



taking only n = 0 term. The origin of this gapless behavior
i1s the Coulomb interaction 1/r in two dimensional space.
4.3 Correlation energy

Next we calculate the (G)RPA correlation energy,

plotal =E'“'+A1d,a% f_:; d*k

(27)2 Vk)(E(X)| 2 a(k)p(~k) 2 |E()))(63)

where p(k) is defined in Eq. (??) and Vik) = ﬁﬁ 15 the
Fourier transformed Coulomb interaction. The second term
is the correlation energy, By replacing p(k) with g,(k) and
V(k) with Vj(k) in Eq (63), the LL projected correlation
encrgy is represented by a vINL basis:

FEDII

1 = &k )
2 h [ oy (B £ u(k)pn(~k) ¢ |E())

Il

BZ (2m)% (2m)2 (27)2 5
H{E{‘Hlb?pwthf-m '!’I.p,bt.p:+h|EfM}~

The integer n is caused by dividing the k-integral region
nto summation of one MBZ. The RPA contributjon for
the correlation energy is the sum of the bubble diagram as
shown in Fig. which is derived by the perturbative calcu-
lation about the virtual coupling constant A. The density
correlation function

d"e‘ﬂl dﬂh 2 L .
(24)2 : n e~ 5 el —pely+ilp —p2)xn
.,!HHE [gﬁ}ﬂ I:'E'.lr}z g If.f'lrk + 27n)e 1 "

K{E{‘}'Hb}.m+ib}-m E“I.pu,'!’!.p:-!-lJEM}}

17
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§ 3 T I 1
o i X wld (k)Wa(R)mll) (k) AW, (k) (1 2 ,T;m“;uw:m{)m
i

mrg

Here m!” is given in Eq. (?7). For an easy estimate, we
take only the diagonal matrix elements contribution

}' i

=%

1 — mon (k) AW, (k)

In the summation about n, the contribution of n > 1

terms are negligible because of the Gaussian factor in V], (k).

So we consider only the n = 0 term. The correlation energy.

cort in-the RPA is written by e*"*(k,w) and 7™(k,,w) as

i poo dw dk

Exea = -3 | o 37 Junz (272

66)

Eq. (65) ~ i S (79 (k)W,(k))?

{log (¢4 (k,w)) + 7 (ky, w)Wo(k)} (6T)

The numerical estimates of EUF the real part of Egp} and
the total energy E*™* per particle at the half-filled | = 2
LL are obtained as follows:

EWF — _0.7675 (68)
E™" = _—0.0366 (69)
Eteal —  _0.8041, (70)

where the energy unit is f- Since the total energy is smaller
than EUF, the quantum fluctuations in the RPA is a signif-
icant contribution including the RPPA plasmon.,

In the GRPA, the summation of the diagram for the
correlation energy is shown in Fig..and

- A
' O(EYW, (k) e
';{ﬂ‘"‘{ Walk)) 1 — m (k) AW (k)

18



Hence, the correlation energy E&gp, in the GRPA is writ-
ten by e**PA(k,w) and #°(k,,w) as

eaFE i i oo dw d*k Hr'ulli':l . Pl 5N =
00/, {Wﬂ{jﬂ}i]
7 [Lﬂ.#}—nﬁm : (71)

The numerical estimates of the real part of EGgp, and the
total energy E**® per particle at the half-filled | = 2 LL

are obtained as follows:

E®" = —0.0523 (72)
Ettal — 08198, (73)

Yoshioka's HF energy of the anisotropic charge density
wave (ACDW) (with a full gap of order 1K):

EY = —0.7763. (T4)

Shibata and Yoshioka 's density matrix renormalization
group (DMRG) method (stripe):

EY” = —0.796 + 0.004. (75)
ACDW is insulator in r and y-direction and the gap

structure canses the quantization of the Hall conductance, which

is different from experiment.
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5 Current activation from undercurrent:on pre-
cise determination of the fine structure constant

3.1 Implications of gas of negative pressure

Unusual thermodynamic properties: negative pressure and
negative compressibility.

Quantum Hall gas shrinks and electric charge density
becomes nﬂ:lunjfunq,

5.2 Current activation from undercurrent as a new tunneling
mechanism

The Fermi energy is in a higher Landau level and lower
Landau levels are filled completely and one Landau level is
partially filled. The induced current in the partially filled
highest Landau level,

.-i'ﬁE";f

Jind = VieME#ginh = (76)
, dm/ et 121 1 (17 v12 —z
l-'f = W[ﬂ drx {Lr EI}} e

. where E3ff is the effective Hall field.
The total longitudinal resistance,

Moy = Rrrﬁejindfg:yEﬂ~ {TTJ

[ - F_J—I -
R‘,,—fh} (78)

where R{?) is the longitudinal resistence of the stripe state,
The experiment of Kawaji et al[?].



5.3 Dissipative QHR

The resistivities at low temperature,

R
Per = pe g ",

e? el
Pey = (3+N)~, (79)
AR, = _u—E';-—eE"ffrtfl

where p is temperature mdependent.
Thus p,, is quantized even though p,, does not vanish.

3.4 Precise determination of the fine structure constant from
IQHE

The unusual properties of the Hall gas
i

quantum Hall gas has a tendency to shrink and the elec-
tric property of some spatial region is determined only from
that region. Even though an energy dissipation oceurs o
some region of the sample, the other part of the same sam-
ple which is completely occupied by the localized electron
could give the exactly quantized value of the Hall condne-
tance,
s

The Hall conductance measured jn this part of the sam-
ple is quantized exactly.
-

In fact there is a small energy dissipation in the real
easurement from the current contact area because there
is a potential drop in the direction parallel to the current,

21



However it is possible to measure the fine structure constant
precisely from the IQHE,

6 Summary

The precise measurement of fundamental physical constants
such as the light velocity,the electron charge, the Plank con-
stant and their combinatios ,the fine structure constant, o
Is important,

Since the most accurate value of o is obtaimed from the
quantum Hall effect.it is necessary to know if the precise
value of o is known from the quantum Hall effect,

Formulation based on von Neumann lattice represen-
taion of guiding center variables is such method that makes
derivation of rigorous identities and study of many body ef-
fects transparent.

We give the proof of the integer quantization of the Hall
conductance and we develope the mean field theory of the
anisotropic quantum Hall gas based on this formalism,
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Fig. 1. The Fermi sea for the K, mvariant Hall
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Fig. 1 Deviation of the Hall resistance from ihe quantized value

Ryi4) given by ARy/Ry and the diagonl resistivity p agning
the cwrrenl J of flling fwctors v larger ihin 4.

Fig. |. (a] Electrode structure of & butterfly-type Hall bar.
Shaded areas nre metsl ohmic electrodes. Lengih of the central
paralisl part: 600 jam. Diistance betwesn adjacent volinge probe
centers: 150 jum. Probe width: 50 pm. (b) Deviation of the Hall
resistance ARy from the guantized value Ry (v=4) and diago-
nal resistivity p,, against current fgp. P 8 calculnted By
e = Ryl whers Ry, bs measured across SPI and DPl, or
&F1 and DL
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Fig. 9. A typical wave function in the configuration space (shaded region in (&)) and energy region in the densily of
states (DOS) in (b). The Fermi energy is in the dissipative QHR and the compressible state extends to the potential
probe regions.
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FIG. 4. Enlarged picture of the energy spectrum A at 0<k,
<wry for k,=0,1,2,#=2+1/2 in the single-mode approximation.
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Fig 2. Energy per particle (dashed lines) in the unit of ¢%/a and pressure (solid line) in the unit of ¢* fa® for
the filling factor v = n+ . Corresponding values for the two-dimensional electron gas without magnetie field
are also shown (gas) at density= #'fa? for B = 6T in GaAs.
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Fig 3. Inverse compressiblity times '~? in the unit of ¢*/a® for » = n4+’. Dashed line shows the corresponding
value of the two-dimensional electron gas without magnetic field (same= as Fig, 2).
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